Investigation of the Properties of Sugarcane Bagasse Particle Reinforced Epoxy Matrix Biocomposites

  • Journal engineering
  • Stephen Durowaye University of Lagos
Keywords: Biocomposites, epoxy matrix, properties, stir casting, sugarcane bagasse particle

Abstract

The stir casting technique was employed to produce sugarcane bagasse particle-reinforced epoxy matrix biocomposites. The microstructure, physical and mechanical properties of the composites were evaluated. The results obtained from the experiments revealed the presence of pores in the microstructure and distribution of reinforcing particles in the epoxy matrix. The control specimen possessed a density of 0.71 g/cm3 while specimens S4, S5 and S6 possessed the highest density of 0.93 g/cm3. Control specimen C1 demonstrated water absorption of 0.25 % while specimens S5 and S6 demonstrated the lowest water absorption of 0.19 %. Control specimen demonstrated the lowest tensile strength of 7.21 MPa whereas specimen S5 which contained 25 wt. % of bagasse particles demonstrated the highest tensile strength of 22.55 MPa. This is 213 % higher than that of the control specimen. Specimen S5 containing 25 wt. % of bagasse particles demonstrated the highest hardness value of 23.95 HV. The control specimen C1 demonstrated the highest impact energy of 4.87 J. The impact energy of the specimens decreased as weight percent (wt. %) of bagasse particles increased. The decrease in impact energy is suggested to be due to the presence of filler particles, which may represent points for localized stress concentration from which failure began.

References

Abedom, F., Sakthivel, S., Asfaw, D., Melese, B., Solomon, E., and Kumar, S.S. (2021). Development of natural fiber hybrid composites using sugarcane bagasse and bamboo charcoal for automotive thermal insulation materials. Advances in Materials Science and Engineering, 1: 1-10. https://doi.org/10.1155/2021/2508840.
Aigbodion, V. S., Agunsoye, J. O., Kalu, V., Asuke, F. and Ola, S. (2010). Microstructure and mechanical properties of ceramic composites. Journal of Minerals and Materials Characterization and Engineering, 9 (6): 527-538. https://doi.org/10.4236/jmmce.2010.96037.
ASTM D256-10. (2018). Standard test methods for determining the Izod pendulum impact strength of plastics. American Society of Testing Materials (ASTM), 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959, USA.
ASTM D570-98. (2018). Standard test method for water absorption of plastics. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959, USA.
ASTM D638-14. (2014). Standard test method for tensile properties of plastics. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959, USA.
ASTM E384-17. (2022). Standard test method for micro indentation hardness of materials. American Society of Testing Materials (ASTM), 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959, USA.
Balaji, A., Karthikeyan, B. and Swaminathan, J. (2019). Comparative mechanical, thermal, and morphological study of untreated and NaOH-treated bagasse fiber-reinforced cardanol green composites. Advanced Composites and Hybrid Materials, 2: 125-132. https://doi.org/10.1007/s42114-019-00079-7.
Balasundar, P., Narayanasamy, P., Senthil, S., Dhabi, N. A. A., Prithvirajan, R., Kumar, R. S., Ramkumar, T. and Bhat, K. S. (2019). Physico-chemical study of pistachio (Pistacia vera) nutshell particles as a bio-filler for eco-friendly composites. Materials Research Express, 6 (10): Article number 105339. https://doi.org/10.1088/2053-1591/ab3b9b.
Bam, S. A., Gundu, D.T. and Onu, F.A. (2019). The effect of chemical treatments on the mechanical and physical properties of bagasse filler reinforced low-density polyethylene composite. American Journal of Engineering Research, 8 (4): 95-98.
Cerqueira, E. F., Baptista, C. A. R. P. and Mulinari, D. R. (2011). Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Engineering, 10: 2046-2051. https://doi.org/10.1016/j.proeng.2011.04.339.
Debnath, B., Haldar, D. and Purkait, M. K. (2021). A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydrate Polymers, 273: 118537. https://doi.org/10.1016/j.carbpol.2021.118537.
Dinesh, S., Kumaran, P., Mohanamurugan, S., Vijay, R., Singaravelu, D. L., Vinod, A., Sanjay, M.R., Siengchin, S. and Bhat, K. S. (2020). Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. Journal of Polymer Research, 27 (1): Article number 9. https://doi.org/10.1007/s10965-019-1975-2.
Durowaye, S., Kanu D., Awotunde, O. and Alao, S. (2022). Effect of particulate of mild steel and aluminium dross on the physical and mechanical properties of epoxy-resin matrix composites. Scientific Journal of Mehmet Akif Ersoy University, Techno-Science, 5 (1): 1-8.
Ferede, E. (2020). Evaluation of mechanical and water absorption properties of alkaline-treated sawdust-reinforced polypropylene composite. Hindawi Publishing Corporation, Journal of Engineering, ID 3706176: 1-8. https://doi.org/10.1155/2020/3706176.
Jafrey, D. J., Manoharan, S., Saikrishnan, G. and Arjun, S. (2019). Influence of bagasse/sisal fibre stacking sequence on the mechanical characteristics of hybrid-epoxy composites. Journal of Natural Fibers, 17 (7): 1-11. https://doi.org/10.1080/15440478.2019.1581119.
Kaewpirom, S. and Worrarat, C. (2014). Preparation and properties of pineapple leaf fiber reinforced poly(lactic acid) green composites. Fibers and Polymers, 15 (7): 1469-1477. https://doi.org/10.1007/s12221-014-1469-0.
Loh, Y. R., Sujan, D., Rahman, M. E. and Das, C. A. (2013). Review Sugarcane bagasse - The future composite material: A literature review. Resources, Conservation and Recycling, 75: 14-22. https://doi.org/10.1016/j.resconrec.2013.03.002.
Mahesha, G. T., Subrahmanya B. K. and Padmaraja, N. H. (2019). Biodegradable natural fiber reinforced polymer matrix composites: Technical updates. International Conference on Inventive Material Science Applications, 2166 (1): 1-9. https://doi.org/10.1063/1.5131588.
Mat-Shayuti, M. S., Abdullah, M. Z. and Megat-Yusoff, P. S. M. (2013). Water absorption properties and morphology of polypropylene/polycarbonate/polypropylene-graft-maleic anhydride blends. Asian Journal of Scientific Research, 6 (2): 167-176. https://doi.org/10.3923/ajsr.2013.167.176.
Mohammed, K., Zulkifli, R., Tahir, M. F. M. and Gaaz, T.S. (2024). A study of mechanical properties and performance of bamboo fiber/polymer composites. Results in Engineering, 23 (102396): 1-10. https://doi.org/10.1016/j.rineng.2024.102396.
Mustapha, K., Sogoye, M., Ottan, A. S., Danyuo, Y., Azeko, S.T. and Annan, E. (2021). Strength and fracture resistance of cellulose fiber reinforced cement composite. Technoscience Journal for Community Development in Africa, 2 (1): 29-37.
OECD-FAO (2023): OECD-FAO Agricultural Outlook 2023-2032, pp. 170-183.
Olabisi, A. I., Ademoh, N. A. and Okechukwu, O. M. (2016). Development and assessment of composite brake pad using pulverized cocoa beans shells Filler. International Journal of Materials Science and Applications, 5 (2): 66-78. https://doi.org/10.11648/j.ijmsa.20160502.16.
Pantyukhov, P., Kolesnikova, N. and Anatoly, P. (2016). Preparation, structure, and properties of biocomposites based on low-density polyethylene and lignocellulosic filler. Polymer Composites, 37 (5): 1461-1472. https://doi.org/10.1002/pc.23315.
Prasad, L. Kumar, S., Patel, R.V., Yadav, A., Kumar, V., Yadav, A., Kumar, V. and Winczek, J. (2020). Physical and mechanical behavior of sugarcane bagasse fiber-reinforced epoxy composites. Materials, 13 (23): 1-13. https://doi.org/10.3390/ma13235387.
Ramleea, N. A., Jawaid, M., Zainudinb, E. S. and Yamani, S. A. K. (2019). Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology, 8(4): 3466-3474. https://doi.org/10.1016/j.jmrt.2019.06.016.
Riseh, R. S., Vazvani, M. G., Hassanisaadi, M. and Thakur, V. K. (2024). Agricultural wastes: A practical and potential source for the isolation and preparation of cellulose and application in agriculture and different industries. Industrial Crops & Products. 208: 1-16. https://doi.org/10.1016/j.indcrop.2023.117904.
Sana, S., Hameed, S. S. and Fahad, B. M. (2015). Improve the impact strength of polymer-polymer composites after post curing. International Journal of Modern Engineering Research (IJMER), 5(7): 40-45.
Seshappa, A., Kumar, G. K. K. and Sankar, C. B. (2018). Analysis of mechanical characteristics of silicon carbide reinforced with aluminum metal matrix composites. International Journal of Scientific Development and Research (IJSDR), 3 (11): 125-131.
Verma, D., Gope, P. C., Maheshwari, M. K. and Sharma, R. K. (2012). Bagasse fiber composites-A review. Journal of Materials and Environmental Science, 3 (6): 1079-1092.
Vidyashri, V., Lewis, H., Narayanasamy, P., Mahesha, G. T. and Bhat, K.S. (2019). Preparation of chemically treated sugarcane bagasse fiber reinforced epoxy composites and their characterisation. Cogent Engineering, 6 (1): 1-11. https://doi.org/10.1080/23311916.2019.1708644.
WAOB-USDA (2024): Sugar: World Markets and Trade. World Agricultural Outlook Board (WAOB)/United States Department of Agriculture (USDA), Foreign Agricultural Service (FAS), USA. https://public.govdelivery.com/accounts/USDAFAS/subscriber/new, Accessed 18/01/2025
Published
2025-04-11
How to Cite
engineering, J., & Durowaye, S. (2025). Investigation of the Properties of Sugarcane Bagasse Particle Reinforced Epoxy Matrix Biocomposites. Journal of Engineering Research, 30(1), 39-49. Retrieved from http://jer.unilag.edu.ng/article/view/2446