Numerical Thermohydraulic Analysis of Flow Boiling in Geometrical-Modified Microchannels

  • Journal engineering
  • Olabode Olakoyejo University of Lagos
Keywords: Boiling, microchannel, ANSYS, CFD, thermohydraulic, working fluid

Abstract

One of the major issues of flow boiling in microchannels is ensuring adequate management of thermohydraulic instabilities which severely impact the system’s efficiency in terms of pressure drop and heat transfer coefficient (HTC). The current study focuses on microchannels with geometric modifications, varying inlet conditions and geometry dimensions with view on mitigating thermohydraulic instabilities and improving overall performance. The study used Computational fluid dynamics (CFD) software - ANSYS Fluent - with the Volume of Fluid (VOF) model to simulate the flow boiling in microchannels. The flow is transient and laminar in a 3-D domain with water (H2O-liquid) as working fluid.  The flow and heat transfer characteristics in baseline rectangular are compared with constricted inlet-, and expanding inlet microchannels. Pressure drop, heat transfer coefficient, Nusselt number, and frictional factor are studied and visualized across varying mass fluxes 3000 – 7000 kg/m2s (for all microchannels) and angle of divergence 0.2o – 1o (for the expanding inlet). The expanding inlet microchannel showed a better thermohydraulic performance, having a 63.25% increase in HTC and a 64.16% reduction in pressure drop compared to the baseline design, highlighting its potential for enhancing thermohydraulic stability. Also, the angle of divergence gave more insights to the expanding inlet microchannel with 0.2 o having a better performance. These findings solidify the critical role of geometric modifications in optimizing microchannel performance, with the expanding inlet design resulting as the configuration for a better heat transfer performance and pressure stability, thus giving valuable insights for advancements in microchannel design and flow boiling applications.

References

Adio, S. A., Olalere, A. E., Olagoke, R. O., Alo, T. A., Veeredhi, V. R., Ewim, D. R. E., Olakoyejo, O. T. (2021). Thermal and entropy analysis of a manifold microchannel heat sink operating on CuO-water nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering. https://doi.org/10.1007/s40430-020-02772-x
Balasubramanian, K., Lee, P. S., Jin, L. W., Chou, S. K., Teo, C. J., and Gao, S., (2011). Experimental investigations of flow boiling heat transfer and pressure drop in straight and expanding microchannels—A comparative study, Int. J. Therm. Sci. 50(12), Pages1 2413–2421.
Balasubramanian, K.R., Peter, R., & Krishnan, R.A. (2022). Recent hypotheses on the parameters of microchannel flow boiling: a comprehensive overview. Microfluidics and Nanofluidic, Page 26.
Broughton, J., and Joshi, Y. K. (2021). Flow boiling in geometrically modified microchannels. Physics of Fluids 33, 103308. https://doi.org/10.1063/5.0062585
Cukrov, A., Tuković, Ž., Ničeno, B., Boras, I., Galović, A. (2017). On Mixture Model Application in Numerical Modelling of Boiling Phenomena, in 24th International Symposium on Heating, Refrigerating and Air Conditioning. Pages 1–7.
Hasanpour, B., Irandoost, M.S., Hassani, M. (2017). Numerical investigation of saturated upward flow boiling of water in a vertical tube using VOF model: effect of different boundary conditions. Heat Mass Transfer, Volume 54, Pages 1925 – 1936. https://doi.org/10.1007/s00231-018-2289-3
Hasselgreaves, J. E., Law, R., Reay, D. A. (2016). Compact heat exchangers: selection, design, and operation: Second Edition
Jia, Y. T., Xia, G. D., Zong, L. X., Ma, D. D., Tang, Y. X. (2018). A comparative study of experimental flow boiling heat transfer and pressure drop characteristics in porous-wall microchannel heat sink. International Journal of Heat and Mass Transfer, Volume 127, Pages 818-833.
Kamel, M. S., Lezsovits, F., Hussein, A. K. (2019). Experimental studies of flow boiling heat transfer by using nanofluids. Journal of Thermal Analysis and Calorimetry, Page 138: 4019-4043. https://doi.org/10.1007/s10973-019-08333-2
Karayiannis, T., & Mahmoud, M. (2017). Flow boiling in microchannels: Fundamentals and applications. Applied Thermal Engineering, Page 115, 1372-1397. https://doi.org/10.1016/j.applthermaleng.2016.08.063
Karayiannis, T., & Mahmoud, M. (2018). Flow boiling in micro-passages: Developments in fundamental aspects and applications.
Kumar, A., Singh, S., & Tiwari, A. K. (2021). Experimental investigation of flow boiling heat transfer in microchannels using water-CuO nanofluids. Journal of Thermal Analysis and Calorimetry, 155(1), Page 547-562. https://doi.org/10.1007/s10973-020-09855-1
Lee, J., O’Neill, L., Mudawar, I. (2020). Computational prediction of key heat transfer mechanisms and hydrodynamic characteristics of critical heat flux (CHF) in subcooled vertical upflow boiling. International Journal of Heat and Mass Transfer, Volume 161, 120262, ISSN 0017-9310. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120262.
Lee, P & Pan, C. (2007). Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section. Journal of Micromechanics and Microengineering. 18. 025005. 10.1088/0960-1317/18/2/025005.
Li, H., Wang, Z., Zhang, H., & Chen, X. (2022). Experimental investigation of flow boiling heat transfer enhancement using hybrid nanofluids. Experimental Thermal and Fluid Science, Page 136, 110693. https://doi.org/10.1016/j.expthermflusci.2022.110693
Li, H., Wang, L., Zhang, H., & Chen, X. (2023). Experimental investigation of flow boiling heat transfer enhancement using carbon nanotube nanofluids. International Journal of Heat and Mass Transfer, Page 187, 121086. https://doi.org/10.1016/j.ijheatmasstransfer.2023.121086
Liu, H., Chen, L., Lin, Z., & Fang, X. (2022). Investigation of flow boiling heat transfer and pressure drop in a small-scale serpentine microchannel. International Journal of Multiphase Flow, Page 143, 103741. https://doi.org/10.1016/j.ijmultiphaseflow.2022.103741
Liu, Y., Wang, Z., Zhang, Q., & Lin, S. (2023). Investigation of flow boiling heat transfer characteristics in multi-port microchannels. International Journal of Heat and Mass Transfer, Page 188, 121124. https://doi.org/10.1016/j.ijheatmasstransfer.2023.121124
Ma, X., Ji, X., Wang, J., Fang, J., Zhang, Y., Wei, J. (2022). Flow boiling heat transfer characteristics on micro-pin finned surfaces in a horizontal narrow microchannel. International Journal of Heat and Mass Transfer, Volume Page 194, 123071, https://doi.org/10.1016/j.ijheatmasstransfer.2022.123071
Mohammed, H. I., Griddings, D., Walker, G. S. (2019). CFD multiphase modelling of the acetone condensation and evaporation process in a horizontal circular tube, International Journal of Heat Mass Transfer, 134, Page 1159-1170. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.062
Mudawar, I. (2011). Two-phase micro-channel heat sinks: theory, applications, and limitations, ASME. J. Electron. Packag; 133(4): 041002 https://doi.org/10.1115/1.4005300
Mudawar, I. (2013). Recent advances in high-flux, two-phase thermal management, ASME. J. Therm. Sci. Eng. Appl. 5(2): 021012. https://doi.org/10.1115/1.4023599
Mukherjee, A. & Kandlikar, S. G., (2009). Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel. Microfluidics and Nanofluidics, 1(2):137-145. http://dx.doi.org/10.1007/s10404-004-0021-8
Normah & Ahmad, Robiah, Adham, Ahmed & Mohd-Ghazali,. (2013). Thermal and hydrodynamic analysis of microchannel heat sinks: A review. Renewable and Sustainable Energy Reviews.
Osowade, E. A., Adelaja, A. O., Olakoyejo, O. T., Obayopo, S. O., Tryggvason, G., Meyer, J. P. & Markides, C. N. (2024). Numerical investigation of flow boiling characteristics of R134A in a smooth horizontal tube, International Journal of Heat and Mass Transfer.
Özdemir, M. R. & Sozbir, Ö.R. (2018). A review of single-phase and two-phase pressure drop characteristics and flow boiling instabilities in microchannels.
Ramesh, K.N., Sharma, T.K. & Rao, G.A.P. (2021). Latest Advancements in Heat Transfer Enhancement in the Micro-channel Heat Sinks: A Review. Arch Computat Methods Eng 28, 3135–3165. https://doi.org/10.1007/s11831-020-09495
Soliman, A. M. A., Abdel Rahman, A. K., Ookawara, S. (2018). Enhancement of vapor compression cycle performance using nanofluids: experimental results. J Therm Anal Calorim.
Sun, D., Xu, J., Chen, Q. (2014). Modelling of the evaporation and condensation phase-change problems with FLUENT, Numerical Heat Transfer, Part B: Fundamentals. 66, Page 326-342. https://doi.org/10.1080/10407790.2014.915681
Vachaparambil, K. & Einarsrud, K. (2019). Comparison of surface tension models for the volume of fluid (VOF) method. Department of Materials Science and Engineering, Volume 7 (8), 542. https://doi.org/10.3390/pr7080542
Wang, J., Wu, J., & Yang, L. (2021). Study on the flow boiling heat transfer performance of R134a in a microchannel heat sink with different channel orientations. Heat Transfer Research, 52(7), Page 601-617. https://doi.org/10.1615/HeatTransRes.2021040586
Wang, Y., Li, S., & Zhang, W. (2023). Study on the characteristics of flow boiling heat transfer of R410A in a horizontal smooth tube. International Journal of Refrigeration, Page 125, 109-120. https://doi.org/10.1016/j.ijrefrig.2022.12.005
Wang, Z., Liu, X., Zhang, Q., & Zhao, J. (2021). Comparative study of flow boiling heat transfer enhancement using structured and plain microchannels. Heat Transfer Engineering, 42(13), Page 1121-1132. https://doi.org/10.1080/01457632.2020.1833332
Wlazlak, A., Zajaczkowski, B., Woluntarski, M., Buschmann, M. H. (2018). Influence of graphene oxide nanofluids and surfactant on thermal behaviour of the thermosyphoon. J. Therm Anal Calorim. https://doi.org/10.1007/s10973-018-7632-x
Yogesh K. Prajapati, Manabendra Pathak, Mohd. Kaleem Khan (2017). Numerical investigation of subcooled flow boiling in segmented finned microchannels. International Communications in Heat and Mass Transfer, Volume 86, 2017, Pages 215-221, ISSN0735-1933. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.009.
Zhang, J., Zeng, S., Tang, Y., Sun, Y., Yuan, W. (2017). Flow boiling characteristics of micro-grooved channels with re-entrant cavity array at different operational conditions. International Journal of Heat and Mass Transfer, Page 114, 1001-1012. https://doi:10.1016/j.ijheatmasstransfer.2017.06.128.
Published
2025-04-08
How to Cite
engineering, J., & Olakoyejo, O. (2025). Numerical Thermohydraulic Analysis of Flow Boiling in Geometrical-Modified Microchannels. Journal of Engineering Research, 30(1), 22-38. Retrieved from http://jer.unilag.edu.ng/article/view/2438