Impact Resistance of Coconut Fibre-Reinforced Concrete
Abstract
Concrete is often subjected to impact loads which reduces its service life. Natural fibres like coconut fibre have certain mechanical and physical properties that can be used to reinforce concrete against such loads. This study used the Charpy impact test to determine the impact resistance of different mix ratios of coconut shell fibre-reinforced concrete. The result revealed that a 3% inclusion of coconut fibre significantly enhanced the material's ability to withstand impact loads. The optimal proportion for maximizing impact resistance was identified as 3%. Concrete samples with a 1:1:2 mix ratio exhibited increased energy absorption capacity, emphasizing the impact of mix proportions on the material resistance to impact.
References
ASTM. (1997). ASTM C29. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. Annual Book of ASTM Standards, 04(September).
ASTM. (2008). ASTM C 127-08: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate.
ASTM. (2019). ASTM International. C136/C136M-19 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. West Conshohocken, PA.
ASTM International. (2015). ASTM C127 Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. ASTM Standard Book.
Aziz, M. A., Paramasivam, P., & Lee, S. L. (1981). Prospects for natural fibre reinforced concretes in construction. International Journal of Cement Composites and Lightweight Concrete, 3(2). https://doi.org/10.1016/0262-5075(81)90006-3
Bär, J., Gudladt, H. J., Fördös, L., & Lendvai, J. (1996). Influence of fibre reinforcement on the aging behaviour of an AlSi12CuMgNi alloy. Materials Science Forum. https://doi.org/10.4028/www.scientific.net/msf.217-222.1145
Baruah, P., & Talukdar, S. (2007). A comparative study of compressive, flexural, tensile and shear strength of concrete with fibres of different origins. Indian Concrete Journal, 81(7).
British Standard Institution. (2019). Bs En 12390-3:2019. In Testing hardened concrete Compressive strength of test specimens.
BS EN 196-3. (2016). Methods of testing cement -– Part 3: determination of setting times and soundness. British Standard.
BS EN 1097-2:2010. (2010). Tests for mechanical and physical properties of aggregates. Part 2: Methods for the determination of resistance to fragmentation. British Standard.
Esaker, M., Thermou, G. E., & Neves, L. (2023). Impact resistance of concrete and fibre-reinforced concrete: A review. In International Journal of Impact Engineering (Vol. 180). https://doi.org/10.1016/j.ijimpeng.2023.104722
Guambo, M. P. R., Spencer, L., Vispo, N. S., Vizuete, K., Debut, A., Whitehead, D. C., Santos-Oliveira, R., & Alexis, F. (2020). Natural cellulose fibres for surgical suture applications. Polymers, 12(12). https://doi.org/10.3390/polym12123042
Hwang, C. L., Tran, V. A., Hong, J. W., & Hsieh, Y. C. (2016). Effects of short coconut fibre on the mechanical properties, plastic cracking behavior, and impact resistance of cementitious composites. Construction and Building Materials, 127. https://doi.org/10.1016/j.conbuildmat.2016.09.118
Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. In Materials and Design (Vol. 187). https://doi.org/10.1016/j.matdes.2019.108397
Khan, M., & Ali, M. (2018). Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fibre. Construction and Building Materials, 182, 703–715. https://doi.org/10.1016/j.conbuildmat.2018.06.150
Li, Z., Wang, L., & Wang, X. (2007). Cement composites reinforced with surface modified coir fibres. Journal of Composite Materials, 41(12). https://doi.org/10.1177/0021998306068083
Lumingkewas, R. H., Husen, A., & Andrianus, R. (2017). Effect of fibres length and fibres content on the splitting tensile strength of coconut fibres reinforced concrete composites. Key Engineering Materials, 748 KEM. https://doi.org/10.4028/www.scientific.net/KEM.748.311
Marvila, M. T., Rocha, H. A., de Azevedo, A. R. G., Colorado, H. A., Zapata, J. F., & Vieira, C. M. F. (2021). Use of natural vegetable fibres in cementitious composites: concepts and applications. In Innovative Infrastructure Solutions (Vol. 6, Issue 3). https://doi.org/10.1007/s41062-021-00551-8
Nayar, N. M. (2017). The coconut: Phylogeny, origins, and spread. In The Coconut: Phylogeny, Origins, and Spread.
Odeyemi, S. O., Akinpelu, M. A., Atoyebi, O. D., & Yahaya, R. T. (2017). Determination of Load Carrying Capacity of Clay Bricks Reinforced With Straw. International Journal of Sustainable Construction Engineering & Technology, 8(2), 2180–3242.
Odeyemi, S. O., Atoyebi, O. D., Odeyemi, O. T., & Ajamu, S. O. (2022). Investigating the optimal combination for gravel and granite in blended palm oil fuel ash concrete. Innovative Infrastructure Solutions, 7(6), 1–8. https://doi.org/10.1007/s41062-022-00950-5
Olanipekun, E. A., Olusola, K. O., & Ata, O. (2006). A comparative study of concrete properties using coconut shell and palm kernel shell as coarse aggregates. Build Environ, 41(3), 297–301.
Ramakrishna, G., Sundararajan, T., & Kothandaraman, S. (2010). Evaluation of durability of natural fibre reinforced cement mortar composite-a new approach. Journal of Engineering and Applied Sciences.
Reddy, N., & Yang, Y. (2005). Biofibres from agricultural byproducts for industrial applications. Trends in Biotechnology, 23(1). https://doi.org/10.1016/j.tibtech.2004.11.002
Rohit, K., & Dixit, S. (2016). A review - future aspect of natural fibre reinforced composite. Polymers from Renewable Resources, 7(2). https://doi.org/10.1177/204124791600700202
Vivas, J. C., Zerbino, R., Torrijos, M. C., & Giaccio, G. (2020). Effect of the fibre type on concrete impact resistance. Construction and Building Materials, 264. https://doi.org/10.1016/j.conbuildmat.2020.120200
Zhang, M. H., Shim, V. P. W., Lu, G., & Chew, C. W. (2005). Resistance of high-strength concrete to projectile impact. International Journal of Impact Engineering, 31(7). https://doi.org/10.1016/j.ijimpeng.2004.04.009