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Abstract 

The pulsatile behaviour of blood flow through a healthy aorta was modelled using Navier-Stokes and continuity 
equations, while the nature of the aorta wall was accounted for by Hooke’s law. The resulting balance equations 
were transformed by using Reynolds transport theorem, and the variables expressed in Fourier modes. Substitution 
resulted in just one equation expressed in terms of Bessel functions, and which required one characteristic 
independent variable, k, to be determined. This was obtained by using Wolfram Mathematica to solve the 
equation along with aorta wall and blood properties (obtained from literature). The characteristic k value used for 
the prediction of the pulsatile nature of the flow was obtained as 0.139983 + 0.0590188i. Simulated results with 
this k value showed variation in blood pressure, aorta expansion and elongation, for a healthy heart to be within 
typical ranges of 80 – 120 mmHg, and 0 – 4mm respectively. The wavelength and wave speed generated by the 
blood flow was determined as 14.0848m and 53.8626m/s respectively.  

 
Keywords: Aorta blood flow, Newtonian fluid, Reynolds Transport Theorem, Wall pressure.  

1.0 INTRODUCTION 

HE human body’s physiological systems: integumentary, musculoskeletal, respiratory, 

digestive, urinary, reproductive, circulatory, nervous, endocrine and the immune systems, 
all work together to keep the body in a state of equilibrium – homeostasis. The circulatory (aka 
cardiovascular) system, which consists of the heart, blood vessels and blood, is charged with 
the responsibility of transporting various substances (O2, CO2, nutrients, metabolic products, 
vitamins, electrolytes, etc.), the transport of heat (heating, cooling), signal transmission 
(hormones), and buffering as well as defense against foreign materials and microorganisms.  
This essential, life-sustaining blood, amounting to 4-4.5 L in women and 4.5-5 L in men of 70 kg 
body weight (Silbernagl and Despopoulos, 2009), is pumped through blood vessels to body 
tissues by the heart.  Blood is composed of blood cells (red blood cells, white blood cells, 
leukocytes and platelets) which are small semisolid particles which increase the viscosity of 
blood and affect its behavior (Thomas and Summan, 2016). The aorta is the main artery 
conveying oxygenated blood from the left ventricle of the heart to the rest of the body, and 
consists of four parts: ascending aorta, aortic arch, descending aorta and abdominal aorta 
(Figure 1). It is a vessel of complex geometry in that it curves, has branches off it and tapers in 
some regions (Chandran, 1993), all these affect the flow pattern of blood through it, which in 
turn determines the state of health of the aorta. 

 

In the last decade, cardiovascular diseases, have risen to become the number one leading 
cause of death across the globe (WHO, 2017; Seta et al., 2017), and per the American Heart 
Association, diseases of the aorta (aneurysm, arteriosclerosis and atherosclerosis) account for 
up to 47,000 deaths each year (Epps, 2012). The development of a better understanding of 
blood flow through the aorta is therefore of major importance to the etiology, diagnosis and 
prognosis of aortic diseases.  
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Figure 1: The Aorta (MedFriendly, 2012) 

 

Generally, to gain better insights into physiological systems, there seems to be a paradigm shift 
in experimentations from in vivo and in vitro studies (qualitative analysis) to in silico studies 
(quantitative analysis), where mathematical models are used for computer simulation. In 
Valentinuzzi (2017) “A statement reaches its maximum clarity and beauty when it can be 
expressed in mathematical terms”. Mathematical modelling of physiological systems is, 
therefore, about quantifying the qualitative using physical and engineering sciences to better 
understand and find solution to physiological problems.  

 

2.0 METHODOLOGY  

Using the laws of conservation, balance equations were obtained around an elemental aorta 
surface, the resulting equations were transformed by using Reynolds transport theorem, and 
the variables expressed in Fourier modes. Substitution method was then used to obtain the 
one model equation to be solved analytically. 
 

2.1 BACKGROUND 
Blood flow in the aorta is periodic in time, pulsatile, as shown in Figure 2b, the highest flowrate 
occurs when the left ventricle (see Figure 2a) pumps oxygenated blood into the aorta – the 
systole phase, and the low flowrate corresponds to when the aortic valve is closed and the 
venae cavae fills the right atrium with deoxygenated blood – the diastole phase. During this 
cardiac cycle the aorta deforms per the pressure exerted on it (Figure 2c), thus helping to 
regulate the blood flow in the body’s circulatory system. 
 
Most of the research works on the description of the behavior of blood flow and pressure in 
the systemic arteries commonly uses the Windkessel and other similar linear lumped models 
(Ursino, 1998; Leaning et al., 1983; Olufsen and Nadim, 2004; Catanho et al., 2012). A 
dimensionless parameter called Womersely number, α, is used to characterize the pulsatile 

nature of blood flow, and it is defined by a





= , where a is the radius of the tube, ω is the 

frequency of the pulse wave (heart rate expressed in radians/sec) and   is the kinematic 
viscosity of blood. The ability of the aorta wall vessel to expand and contrast passively with 
change in pressure is also an important feature. 
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Figure 2: (a) The heart (Educational Designers, 2017);  (b) A typical flowrate in the aorta during the 

systole-diastole cardiac cycle (Quarteroni and Formaggia, 2004);  (c) Illustrating aorta deformation thus 
ensuring constant blood flow (Catanho et al., 2012) 

  
2.2 STEADY BLOOD FLOW THEORY 
Blood flow in a vessel is normally modeled as an incompressible, laminar flow fluid of a 
Newtonian nature through a straight, rigid, cylindrical tube of constant cross-sectional area. 
This type of flow is called circular Poiseuille flow or more commonly known as Hagen-Poiseuille 
flow. 
 

Using the Hagen-Poiseuille model (Kundu et al., 2012), illustrated in Figure 3, and in cylindrical 
coordinates (r, θ, x) where x is the axial coordinate, r is the radial distance from the x-axis, P is 
pressure, and θ the circumferential angle. The axial flow velocity,  ( )u u r=  

 
2 2

( )
4

r a dP
u r

dx

−  
=  

 
 (1) 

 
 

(a) 

(c) 

(b) 
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Figure 3: Hagen-Poiseuille Flow (Kundu, 2012) 
 
2.3 ELASTICITY OF THE AORTA AND THE WINDKESSEL THEORY 
During blood circulation in the body, it is not all the blood pumped into the aorta that goes into 
the systemic circulation. A part of the blood is used to distend the aorta and a part of the blood 
is sent to peripheral vessels. The distended aorta acts as an elastic reservoir or a Windkessel 
(Nico et al., 2009) 
In the Windkessel theory, blood at the rate Q(t) from the left ventricle enters an elastic 
chamber (aorta) and a part of this flow out into a single rigid tube representative of all the 
peripheral vessels. The rigid tube offers constant resistance R, equal to the total peripheral 
resistance that was evaluated in the Hagen-Poiseuille model. 
 
2.4 MODEL DEVELOPMENT 
Most of the available proposed models on blood flow through the cardiovascular system are 
classified based on their dimensionality which ranges from zero dimensions (0-D) to three 
dimensions (3-D). In the 0-D model, also called lumped parameter models, it is assumed that 
the fundamental variables such as volume, pressure, density, flow etc. are uniformly 
distributed throughout the system at any point in time while the higher dimensions’ model 
takes into cognizance the variations in these variables with respect to time and space. 
3D numerical analysis, which is generally based on CT imaging (Morris et al., 2005), CFD (Benim 
et al., 2011; Caballero and Lain, 2015; Vinoth et al., 2017) and/or MRI imaging (Seta et al., 
2017) provide real geometry and real flow conditions of blood flow in the aorta, but are 
complex and enormously computationally intensive (Grinberg et al., 2009; Rahman and Haque, 
2012). In as much as these 3D simulations are invaluable to our understanding of most 
diseases, San and Staples (2012) noted that most facilities do not have ready access to these  
machines, there is therefore a need to have an approach that is less computationally intensive 
yet still accurate and can give useful results in a reasonable amount of time on a desktop 
computer. This paper obtains a model for blood flow in the ascending aorta that can be solved 
analytically without being cumbersome. 
 

The Navier-Stokes and the continuity equations were used to develop a novel and simple one-
dimensional equation, for blood flow in the ascending aorta.   

 
The following simplifying assumptions, which have been defended in literature (Fairchild et al., 
1966; Steinman 2012; Bessonov et al., 2016; Vinoth et al., 2017), were used for developing the 
model:  

(i) The ascending aorta is a straight tube with circular cross-section, and with a proximal 
(the part closest to the heart) diameter of 2-3 cm, and a distal diameter of 1 cm, in the 
human adult 

(ii) The aorta wall is thin, elastic with material properties approximately homogeneous 
over the segment under consideration and obeys Hooke’s law 

(iii) Due to the comparatively large size of the aorta, blood flow is considered 
incompressible, homogeneous, Newtonian, and isotropic and temperature effect on 
blood properties is insignificant. 

(iv) Flow is laminar with no secondary flow 
(v) No chemical interaction with the aorta wall and diffusion through the aorta wall is 

negligible 
(vi) Effect of temperature on blood properties is insignificant  
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Blood, which, is normally modelled as a non-Newtonian fluid, using the Casson or third grade 
fluid model, has been noted by many researchers (Bessonov et al., 2016; Kundu et al., 2016; 
Vinoth et al., 2017; Seta and Vila ,2017; Menut et al., 2018) to behave like a Newtonian fluid in 

large arteries such as the aorta, where shear rate is greater than 100s-1(Pedley, 2008). Considering 
blood as a Newtonian fluid, as is done in this paper, is therefore a satisfactory assumption for 
the aorta.  
The objective of modelling is to determine the aorta wall stress as a function of the pressure 
and velocity of the blood flow, and this was achieved by taking mass, momentum, and force 
balances around the aorta, using the Reynolds transport theorem.  
For any given intensive property, , Reynolds transport theorem (Albert, 2017) can be written 

as 
 

d

dt
rf

W
CM

ò dW =
¶

¶t
rf d W

W
CV

ò + rf(v -v
b
)

S
CV

ò ×ndS  (2) 

where CM is the volume of the control mass, CV   the volume of the control volume, CVS   

the surface area enclosing the control volume,   is the density, d  the differential control 

volume of fluid, v  the velocity of fluid flow, bv  is the reference velocity or the velocity with 

which control volume surface is moving,  n   the unit vector orthogonal to CVS in the outward 

direction,   is any given intensive property, and dS is the differential control surface area. 
 

2.4.1 Mass Balance 

Since the ascending aorta is stationary, and of a fixed control volume, 0bv =  and for a mass 

balance,   . Mass in the aorta is neither created nor destroyed within the system, 

thus equation (2) becomes     

)
CV CV

system

S

d
M d v ndS

dt t
 




=  + 

                  (3) 

From Gauss-Ostrogradskii divergence theorem. (Bird et al., 2007; Wikipedia, 2017), 

( ) ( )

CV CVS

v n dS v d 


 =     and equation (3) becomes 

 0
CV

v d
t






 
+   = 

 
                         (4) 

With the assumption that the aorta is a cylindrical tube with uniform cross section, density is constant 
and velocity and changes in θ-direction are negligible (where r, θ and z are cylindrical coordinates) 

( )1
0r zrv v

r r z

 
+ =

 
 (5) 

 
2.4.2 Momentum Balance 
Considering only the r and z – directions of the cylindrical coordinate and assuming variations 
in  -direction is negligible. 

Conserved quantity is momentum (mv), which implies
mv

m
 =  = v, Equation (2) gives 

) ( ) ( )

CV CV

system

S

d
MV v d vv ndS

dt t
 




=  + 

    (6) 
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where d mass  =  and )
system

MV =  total momentum of the system. From Newton’s second 

law of motion,  )
CV CV

isystem

S

d
MV F b d T ndS

dt




= =  +         (Ferziger and Peric, 2002) 
 

where: F =   Force, ib =  Body force per unit mass, and T = Surface force per unit area. 

With body forces assumed negligible, applying the Gauss–Divergence theorem, differentiating 
and rewriting in the r – direction, gives  

( )
( ( ))r

r r

v
t v v

t





 = + 


                   (7)  

where rt  represent surface forces in r-direction which is a function of force due to pressure, P, 

normal stress and tangential stresses. Therefore equation (7) can be written as: 

( ) ( ) ( )
1 1

r rr r zr

P
t r

r r r r z r





  



−    
 = − − + + −     

             (8) 

Combining equations (7) and (8), and introducing the same assumptions used for the mass 
balance, with negligible changes in the θ direction, only the r and z directions  considered, that 

is 0v = , 0



=


 and substituting the Stoke’s relations  gives  

2 2

2 2 2

1r r r r rv v v v vP

t r r r r r z
 

    
= − + + − + 

     
 (9) 

2 2

2 2

1z z z zv v v vP

t z r r r z
 

    
= − + + + 

     
    (10) 

 
2.4.3 Force Balances on the Aorta Wall 
Let the aorta wall displacement in the r,   and z directions be ,  and  respectively. The 

density of the aorta wall material is given as w . The initial radius of the tube is 0a  and the 

thickness of the aorta wall is h. The aorta wall is assumed to obey Hooke’s law and the bending 
stress during blood flow is negligible due to the thinness of the wall. 
The circumferential tension of a thin elastic tube that obeys Hooke’s law  (Kundu, et al., 2012) 

is given as 
2

01

Eh
T w

w a z


  
= + 

−  
 and the axial stress as 

2

01
z

Eh
T w

w z a

  
= + 

−  
, where: T = 

circumferential tension, zT = axial stress, E = Young modulus constant and w  = Poisson’s ratio 

(ratio of the proportional decrease in thickness, lateral measurement, to the proportional 
increase in length of an elastic material that is stretched). 
The Force balance is carried out on differential control volume of the aorta with the change in 

volume given as d hrd dz = , rr and rz are stresses in the r- and z-directions respectively  

In the r – direction, 
2

2

0

w rr r a

T
hrd dz rd dz rd dz

t a


    

=


= −


,  

which gives 
2

2

0

w rr r a

T
h

t a


 

=


= −


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2 r
rr r a r a

r a

v
P

r
 

= =

=

 
= −  

 
  

and 
2

2 2 2

0 0

2
1

r
w r a

r a

v Eh w
h P

t r w a a z

  
 

=

=

   
= − − +  

  −    
           (11) 

In the z –direction, 
2 2

2 2 2

01

z r
w

r a

v v Eh w
h

t r z w z a z

  
 

=

     
= − + + +  

   −     
      (12) 

Note, displacement in   direction is also assumed to be negligible. 
 
2.5 Analytical Solution of Equations 
The equations that were derived to model blood flow through the aorta are given by Equations 
(5), (9), (10), (11) and (12) and these equations can be solved using either analytical or 
numerical methods. For the scope of this paper the analytical (substitution) method, is used.  
 
2.5.1 Boundary Conditions:  
The velocity component of the fluid at the wall is equal to the rate of elongation and expansion 
of the aorta. Therefore, 

0

0

z r a
r a

v
t


=

=


=


         (13) 

0

0

r r a
r a

v
t


=

=


=


          (14) 

The five quantities or variables from the five equations obtained for the model can be 
represented in terms of Fourier modes because they are all periodic. Thus,  

( )

( )

( )

( )

( )

( , , ) ( )

( , , ) ( )

( , )

( , )

( , )

i kz t

r r

i kz t

z z

i kz t

i kz t

i kz t

v z r t v r e

v z r t v r e

P z t P e

z t e

z t e











 

 


−


−


−


−


−

=

=

=

=

=

           (15) 

 where: ( ), ( ), , ,r zv r v r P  
    

are amplitudes, 2 /T = = Frequency of the forced disturbance, 

and T  = Period of the heart cycle, k is a complex constant that defines the characteristics of 

the wave form and its given as 1 2k k ik= + , where 1k is wave number and 2k is a damping 

constant which is a measure of decay of the disturbance as it moves along the aorta. 

From (Kundu et al., 2012),  1 22 / k k k  = = + , wavelength =   
2

k


=  and wave speed,  

1

c
k


=  

Combining equations (15), (10) and (5), simplifying and since ( )zv r


is only a function of radial 

coordinate, it can be expressed as 

2

2

( ) ( ) ( )1z z zd v r d v r v r i pik

dr r dr

 

 

   

+ + =            (16) 



JER Vol. 23, No. 1 Ajayi et al. pp. 43-54 

 

50 

 

Equation (5) becomes 

( ( ))1
( )r

z

d r v r
v r ik

r dr




= −                                                                                      
(17) 

Rewriting equations (11) to (14) in terms of the Fourier modes of (15) and solving gives  

0

2

0 0

( )z

r a

d v rEh iw
P

a a k dr
 


 

=

= −                                                     
(18) 

0

2

2

0

( )1 z

r a

d v riw w

a k Ehk dr
  


 

=

−
= −                                                   

(19) 

Substituting into equation (16) gives Bessel’s differential equation 
 

0

2

2 2

0 0

( ) ( ) ( ) ( )1z z z r

r a

d v r d v r v r i d v rik Eh w

dr r dr a a dr

 
 

 

   


=

+ + = + ,  

whose solution is given as the Bessel function ( ) ( )0 1 02

0 0

( )z

k Eh w
v r AJ r AJ a

a a
  

  

 

= + −  

where /i  = , A is arbitrary constant and   is kinematic viscosity given as 





=  

Solving equation (17) by substituting the Bessel function above with the given boundary 
conditions give: 
 

2
2 20 0

2

2 2

0 0
1 1

2 4 4 1 2 (1 ) 0
2 2

J J
k Eh k Eh

w w
a a

J J

 

 
   

 

 

 

 

      
             −  +  − −  + − =   
         
            

                  (20) 

Simulation codes to solve Equation (20) were developed using Mathematica® along with the 
physiological data given in Table 1, to obtain an appropriate k value. 
 

Table 1: Physiological data used in the simulation 

Parameters Value 

Heartbeat per minute 
Density of blood, ρ, kg/m3 
Viscosity of blood, μ, kg/m/s 
Diameter of aorta, d, m 
Wall thickness of aorta, m 
Poisson’s ratio for aorta, υ 
Young’s Modulus of aorta, εi, Pascal 

72 
1050 
0.004 
0.025 
0.002 
0.5 
700,000 

(Source: Morris et al., 2005; Benim et al., 2010) 
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3.0 RESULTS AND DISCUSSION 

The k value obtained from equation (20) was then used in equation (15) to obtain pressure (P), 
elongation (ξ) and expansion (η) with respect to time. Using the pressure amplitude of 
120mmHg as reference, the first k value (0.139983 + 0.0590188i) was chosen for the simulation 
because it gave the closest estimate of the predicted pressure amplitude (119.907mmHg) as 
compared to the value (119.522mmHg) obtained when the second k value (1.055640 + 
0.0264822i) was used. The corresponding wavelength and wave speed of the chosen k value 
was obtained as 14.0848m and 53.8626m/s respectively. Figure 4 shows the resulting plot of 
blood pressure and elongation of the aorta with respect to time using both Re(k) and Im(k).  
 

Figure 4:  Plot of Pressure and Aorta Elongation against Time using Re(k) and Im(k) 
 

In the simulation, it was assumed that the diastolic pressure in the aorta of a healthy adult is 
constant at 80mmHg while the systolic pressure rises from 80mmHg to 120mmHg during the 
systole phase of the cardiac cycle. This assumption was because there would be no blood flow 
in the aorta during the diastole phase of cardiac cycle because of the closure of pulmonary and 
aortic valves. Similarly, there would be no expansion and elongation of the aorta during this 
period. Hence, all pressure values below 80mmHg from the model simulations were 
normalized to 80mmHg while all expansion and elongation values below zero were also 
normalized to zero.  
Re(k), resulted in sinusoidal waveforms while the use of Im(k), gave cosine waveforms of same 
wave characteristics for any fixed value of z. Figure 5 presents the pulsatile behaviour of blood 
pressure, aorta elongation and expansion for both real and imaginary parts of the k value. 
 

The k value used for simulating the pulsatile behavior of blood flow showed variation in blood 
pressure, aorta expansion and elongation, for a healthy heart to be within typical ranges of 80 
– 120 mmHg, and 0 – 4mm respectively. The wavelength and wave speed generated by the 
blood flow was determined as 14.0848m and 53.8626m/s respectively.  
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Figure 5: Plot of Pressure, Aorta Expansion and Elongation against Time using Re(k) and Im(k) 
 

4. CONCLUSION  

An analytical model was obtained for blood flow through the ascending aorta using Navier-
Stokes and continuity equations. The resulting solution showed that for a given set of 
physiological data (mechanical properties of the aorta wall and blood properties), just one 
parameter, the k value, is required to predict the pulsatile behaviour (of   pressure, elongation 
and expansion) of the blood flow through the aorta.  However, because of the quadratic nature 
of the analytical model, two different k values were obtained, but the value that gave the 
closest approximation of the measured amplitudes was chosen.  
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NOMENCLATURE 

ao      initial radius of aorta,    
a   final radius of aorta  
dS    differential control surface area 
E    Young modulus constant 
h        thickness of aorta wall 
 =     Dilatational viscosity, 
L    length of tube 

n     unit vector orthogonal to CVS in the 

outward direction, 
P         Pressure,  
r    axial distance from tube axis 
r, θ and z are cylindrical coordinates 

CVS   Surface area enclosing the control volume, 

t    time 

T       circumferential tension, zT     axial stress, 
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v    kinematic viscosity of blood 
v     velocity of fluid flow,  

bv     reference velocity or the velocity with 

which control volume surface is moving,   
w   Poisson’s ratio of aorta 

x    tube axis,  
α   womersely number  

, ,rz z zz   and  =  Stress tensors. 

,  and   are aorta wall displacement in the r, 

  and z directions respectively 

 =     blood viscosity,  

       blood density, w  density of aorta wall  

     any given intensive property,  

ω   frequency of pulse wave 

CM   Volume of the control mass,   

CV   Volume of the control volume,  

d   differential control volume of fluid,  


