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Abstract 
This paper presents a cultural algorithm-based artificial bee colony algorithm to modify the artificial bee colony (ABC). The 
normative and situational knowledge inherent in the cultural algorithm is utilized to guide the step size as well as the 
direction of evolution of ABC at different arrangements. This was done in order to combat the disparity between exploration 
and exploitation associated with the standard ABC, which results in poor convergence and optimization inefficiency. Four 
variants of Cultural Artificial Bee Colony Algorithm (CABCA) are accomplished in MATLAB/Simulink program using different 
configurations of cultural knowledge. A total of 20 standards applied mathematical optimization benchmark functions 
(Ackley, Michalewicz, Quartic, Sphere etc) are employed to evaluate the performance, and it was found that all the four 
variants of CABCA outperformed the standard ABC. The superiority of CABCA variants over ABC justifies the essence of 
knowledge introduction in the belief space for self-adaptation. 
  
Keywords - Artificial Bee Colony; Cultural Algorithm; Cultural Artificial Bee Colony Algorithm; Exploration and Exploitation. 

 
1.0 INTRODUCTION 

The artificial bee colony (ABC) is one of the swarm intelligence algorithms used to solve optimization 

problems which is inspired by the foraging behaviour of the honey bees. Since its advent (Karaboga, 
2005) ABC and its variants have attracted increasing interest and has been applied to solve many real-
world optimization problems (Karaboga  and Basturk, 2008; Lin  and Su, 2012; El-Telbany, 2013). The 
ABC has the advantages of strong robustness, fast convergence and fewer setting parameters. Also, the 
performance of ABC has already been compared to other Evolution algorithms (EAs) such as Generic 
algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO) (Karaboga and 
Basturk, 2007, 2008; Karaboga and Akay, 2009). The results show that ABC is better than or at least 
comparable to the other compared methods (Karaboga  and Akay, 2009). However, like other swarm 
algorithms, ABC also faces convergence problems. The reasons are as follows. It is well known that both 
the exploration and the exploitation are necessary for a population-based optimization algorithm. In 
EAs, the exploration refers to the ability to investigate the various unknown regions in the solution 
space to discover the global optimum. The exploitation refers to the ability to apply the knowledge of 
the previous good solutions to find better solutions. Actually, the two aspects contradict to each other. 
For the sake of the good performance on the optimization problems, the main challenge is how to 
strike a good balance between the exploration and the exploitation in the search process Gao et. al. 
(2016). In order to address these shortcomings, an adaptive parameter is introduced to address the 
imbalance. This paper presents a knowledge based ABC called the CABCA using both situational and 
normative cultural knowledge. This research is an extension of Adebiyi et. al. (2017) as they did not 
explore various configurations of the situational and normative knowledge.  
To improve the performance of the standard ABC, some ABC variants have been developed. Here are 
some of the few; In the work of Lee  and Cai, (2011), a  diversity strategy (DABC) was introduced to 
preserve sufficient amount of diversity among the candidate solutions by switching between 
exploration and exploitation. Also in the work of Banharnsakun et. al. (2011), a best-so-far method was 
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proposed. The onlooker bees compared the information from all employed bees to select the best-so-
far candidate food source. This will bias the solution handled by onlooker bees towards the optimal 
solution. Yan and Li proposed a chaotic local search method which was applied to solve the accuracy 
problem of global optimal value  (Yan  and Li, 2011). Gao et al. (2016) improved the exploitation ability 
of ABC by proposing a new algorithm, i.e. DGABC, which combined DE with best-guided ABC (GABC) by 
an evaluation strategy with an attempt to utilize more prior information of previous search experience 
to speed up the convergence. This was done by increasing the numbers of the scout to enhance better 
initialization, which in turns improved the convergence of ABC algorithm. Also, in the work of Liang et. 
al. (2017), an adaptive differential operator was embedded into the employed bee phase of ABC to 
enhance global convergence capability of the algorithm. A stair-step probability calculation method was 
designed for onlooker bees to differentiate the good solutions and bad solutions, such that more 
computational effort can be put into the local search of promising areas. A novel ABC variant namely 
ABCADE is formed by combing the basic framework of ABC and the two proposed algorithmic 
components. The experimental results show that ABCADE obtains superior or comparable performance 
to other representative state-of-the-art ABC and DE algorithm. Adebiyi et. al. (2017) proposed an 
improved ABC algorithm using knowledge inherent in Cultural Algorithm (CA) to develop two variants 
of ABC. The simulation results showed that the two variants have better performance than the 
standard ABC. 
Our preliminary review of literature indicates that successful efforts have been made by researchers to 
address some of the problems associated with the ABC. However, the experience of individuals and the 
knowledge derived from the parent as a result of evolution has not been efficiently utilized. In this 
work, this individual experience will be employed through cultural evolution process to propose new 
variations of ABC called the CABCA. This is expected to improve the original ABC algorithm but not 
necessarily complicate the algorithm.  
 
Artificial Bee Colony Algorithm 
The standard ABC Algorithm consists of three kinds of bees; employed bees, onlooker bees and scout 
bees. Employed bees are responsible for exploiting the nectar sources explored and take the 
information obtained about the quality of the food source locations which they are exploiting to the 
waiting bees (onlooker bees). Onlooker bees wait in the hive and decide on a food source to be 
exploited based on the information received from the employed bees. Scouts bees randomly search the 
environment in order to find a new food source depending on an internal motivation or based on 
possible external traces.  In the ABC algorithm, the position of a food source represents a possible 
solution to the optimization problem, and the nectar amount of a food source corresponds to the 
profitability (fitness) of the associated solution (Karaboga, 2005). The ABC as an iterative algorithm 
starts with the employed bee searching for food source within the neighborhood of the food source. 
Let suppose an employed bee is currently positioned at a food source position. During this stage, each 
employed bee searches in the neighborhood of its current position to produce new trial food 

source iv using: 

( )
ijkjijijij xxxv −+=                 (1) 
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    Where,  Dj ,...,2,1 and  SNk ,...2,1  are randomly picked indices, D  is the dimension of the 

problem, SN  is the number of food positions and ij   is a uniform random value [-1, 1] (Karaboga  and 

Basturk, 2008). 

Thus, the new solution iv is produced from ix  by perturbing its randomly picked location 
thj parameter 

and using the information of ix  and another randomly picked solution kx . If iv  has better fitness than 

the old food position ix , then ix is replaced by iv . Otherwise, the previous position ix  is retained.  
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For the problem of function optimization, where f  is the function to be minimized, ABC computes the 

fitness of a candidate solution ix using (2) ( Bansal  and Mittal, 2017): 

After all the employed bees complete their search, they share their information related to the nectar 
amounts and the positions of their sources with the onlooker bees in the dance area. The dance area is 
where the exchange of information about the quality of food sources occurs. An onlooker bee 
evaluates the nectar information taken from all employed bees and chooses a food source location 
with a probability related to its nectar amount.  
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The probability iP that the employed bee with food source ix would be picked by an onlooker bee is 

computed using (3), making the probability iP to be proportional to ( )ixfitness . 

Like the employed bees, each onlooker bee also employs (2) to produce trial food source iv  in the 

vicinity of its current food source position. If iv has better fitness then ix  is replaced by iv . Otherwise, 

ix is discarded.  

A scout bee is created only when a particular food source cannot be improved through a 
predetermined number of trials limit.  

       ( )( )jjjij randx minmax1,0min −+=            (4) 

The employed bee now becomes a scout bee and its food source is positioned randomly across the 

search space using (4) where j = 1, 2… D and  jj min,max  is the search space along the   dimension 

(Alam et al., 2015). 
Below is the pseudo-code for the standard ABC algorithm. 

1) Begin  
2) Initialize the solution population, SNi ,....,1=  

3) Evaluate population  
4) cycle = 1 
5) Repeat  
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6) Generate new solutions ijv for the employed bees using (1) and evaluate them. Keep the best 

solution between current and candidate 
7) Select the visited solution for onlooker bees by their fitness  

8) Generate new solutions ijv  for the Onlooker bees using (2) and evaluate them  

9) Keep the best solution between current and candidate  
10) Determine if there exist an abandoned food source and replace it using a scout bee 
11) Save in memory the best solution so far 
12) cycle = cycle + 1  
13) Until cycle = M C N 

 
In a robust search process, exploration and exploitation processes must be carried out together in 
equal proportion. The onlooker and employed bees carried out the exploitation process in the search 
space, while the scouts are responsible for the exploration process. In the case of real honey bees, the 
recruitment rate represents a measure of how quickly the bee colony finds and exploits a newly 
discovered food source (Karaboga  and Basturk, 2008). This recruiting could also represent the 
measurement of the speed of which the feasible solutions of the difficult optimization problems can be 
discovered. 
  
Cultural Algorithm 
Cultural Algorithms (CAs), is an evolutionary model which is inspired by the model of the cultural 
evolution process. The CAs has been developed in order to model the evolution of the cultural 
component of an evolutionary computational system over time as it accumulates experience. CAs can 
provide an explicit mechanism for global knowledge and a useful framework within which to model 
self-adaptation in an evolutionary or swarm intelligence system (Chung, 1997; Reynolds  and Chung, 
1997; Reynolds  and Peng, 2005). CAs model has two levels of evolution (population level and belief 
space level). The population space consists of a set of possible solutions to the problem and can be 
modelled by using any population-based optimization method. The belief space is the place where the 
information about the knowledge on the solution of the problem is developed and stored. The belief 
space has the goal to guide individuals of the population in search of better regions. The five basic 
categories of cultural knowledge have been identified: Normative, Situational, Domain, History, and 
Topographical Knowledge (Reynolds  and Peng, 2004). In this paper, the population component of the 
CA will be the ABC and the global knowledge that has been learned by the population will be expressed 
using situational and normative knowledge.  
 
Situational Knowledge 
Situational Knowledge represents the best individuals found at a certain time of evolution and it 
contains a number of individuals considered as a set of exemplars to the rest of the population. The 
Situational Knowledge is updated when the best individual of the population is found, that is at 
iteration ,t    t

n

tttt sssSSS ,....,, 21== . This situational knowledge equation can be represented as 

(Reynolds  and Chung, 1997): 
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where 
1+t

gbestX denotes the best artificial bee individuals in the colony at generation 1+t  

 
Normative Knowledge 
Normative Knowledge describes how the individual should act in terms of ranges of acceptable 
behaviour. In other words, normative knowledge defines a standard or ideal way that can be used to 
judge which behaviour is desirable or undesirable. Normative Knowledge provides standards for 
interpreting and determining individual behaviours through guidelines within which individual 
adjustments can be made. The normative component is a set of interval information for each n  
parameter. Each of the intervals in the belief space is represented as a triple Reynolds  and Chung, 
(1997).  

ULIN ,,=                                                                                               (6) 

where LI ,  and U , are −n dimensional vectors, and jI  denotes the closed interval for the variable j   

that is a continuous set of real numbers x   represented as a number pair: 

   
jjjjj uxlxulI == ,

             (7) 

n  is the number of the variables, jl  and ju are the lower and upper bounds for the 
thj variable,  

respectively, jL  and jU  are the values of the fitness function associated with the bound jl  and ju  are 

usually initialized with positive infinity. Usually, the normative knowledge leads individuals "to jump 
into the good range" if they are not there yet usually initialized with positive infinity (Reynolds  and 
Peng, 2004).  
The Normative Knowledge is updated as follows Chung, (1997): 
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 where the thi individual affects the lower bound for the variable j , and the thk individual affects the 

upper bound for the variable j . It should be noted that t  denotes the current generation of individuals.  

 
2.0 METHODOLOGY 
In this research, the Cultural Algorithm is used to propose an improvement on Artificial Bee Colony 
(ABC) Algorithm. The population level of the Cultural Algorithm component will be the ABC algorithm. 
The global knowledge that has been learned by the population is expressed in terms of both normative 
and situational knowledge.  
The experience of the selected individuals from the population (bee) contributes to the cultural 
knowledge by means of acceptance function. An acceptance function is used to control which 
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members of the population are permitted to impact the belief space. They determine which individuals 
in the current generation of the population will contribute with their knowledge to belief space. The 
experiences of the selected individuals are used to update the knowledge of the current belief space. 
In turns, the knowledge in the beliefs will be used to guide and influence the evolution of the 
population. In this research, the acceptance function for component N selects the best range of the 
20% performing individuals in each generation is calculated and successive generations will be 
randomly generated in this promising range. This will increase the convergence and will preserve 
wasting time in discovering the good regions. The number of the individuals accepted for the update of 
the belief space is obtained according to the following function (Chung, 1997; Reynolds  and Chung, 
1997; Salawudeen, 2015). 

( )  tNNtN  .., +=            (12) 

   where N  is the size of the population, t  is the current number of generation and   is a parameter 

given by the user t (in this work, 0.2 is adopted). That is, top 20% of the population.   
 
CABCA Knowledge Adjustment and Variants 
Each of the knowledge in the belief space has its own rules and approach of operations. This rule which 
is also referred to as update function as described above in situational and normative knowledge. 
Consequently, four variants of CABCA (CABCA(Ns), CABCA(Sd), CABCA(Ns+Sd) and CABCA(Ns+Nd)) 
were developed using the different influence function. 
Below is the pseudo-code for the “cultured” ABC algorithm. 
 
1) Begin 
2) Initialize the solution population, 
3) Evaluate population 
4) cycle = 1 
5) Repeat 
6)  Generate new solutions for the employed bees using (1) and evaluate them. Keep the best 

solution between current and candidate 
7) Update the belief space with the given problem domain and candidate solutions. 
8) Apply acceptance function (top 20%) 
9) Select the visited solution for onlooker bees by their fitness 
10) Generate new solutions   for the Onlooker bees using (2) and evaluate them 
11) Keep the best solution between current and candidate 
12) Determine if there exist an abandoned food source and replace it using a scout bee 
13) Save in memory the best solution so far 
14) cycle = cycle + 1 
15) Until cycle = M C N 
The belief space knowledge can influence the evolutional operation, in two ways (Chung, 1997): 
1) Determining the step size of the evolution 
2) Determine the direction of evolution 
These two operations are applied to the solution search equation for the ABC as given in equation (1) 
as adaptive parameters in order to balance exploration and exploitation which is often necessary for 
good results and sufficient convergence speed of the algorithm, especially for complex, high 
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dimensional, multimodal problems with many local optimal points. The variants were developed using 
the following configurations: 
 
CABCA(Ns): CABCA using normative knowledge 
This is the simplest form of cultural influence. This variant uses only the normative knowledge to 
determine the step size of evolution. For all components ti ,...,1=  and .,...,1 nj =   This can be 

expressed mathematically as follows: 

( ) ( )
kjijijj

t

ij

t

ij xxIsizexx −+=+ 1                                 (13) 

  where ( )
iij luIsize −= is the size of the belief space interval for the parameter ,i which is decided by 

the normative knowledge for thi variable 
 
CABCA(Sd): CABCA using situational knowledge 
In this variant only situational knowledge of the current exemplar or best solution found so far, is used 
to decide the direction of evolution. The variation is influenced as follows: 
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CABCA(Ns+Sd): CABCA using normative and situational knowledge 
This variant uses both normative knowledge to determine the step size, and situational knowledge to 
determine the direction as shown in the following, for all components ti ,..,1=  and nj ,...,1=  
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   where  ( )
jIsize=  is the size of the belief space interval which is ii lu −   

If an individual’s parameter value is less than that of the current best, then the absolute value of the 
calculated step size, ( )

jIsize , is added to the current parameter value. If an individual’s parameter value 

is greater than that of the current best, then the absolute value of the step size, ( )
jIsize , is subtracted 

from the current parameter value. If an individual’s parameter value is equal to that of the current 
best, then ( ) ( )

kjijijj xxIsize −  is just added to the current parameter value. In this case, the direction of 

evolution will be random.  
 
CABCA(Ns+Nd): CABCA using normative for step size and direction of evolution 
This variant uses only normative knowledge to influence the evolution of both step size and direction. 
The basic idea behind this variant is to perturb small in a random direction when the parameter value 
of a parent is in the acceptable range; otherwise, perturb according to the current belief range found 
toward the left or right boundary of the current range in the belief space. For all components ti ,...,1=  

and nj ,...,1= . 
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where ( ) kkk luIsize −==  which represents the size of the current upper limit and lower 

limit in the belief space for parameter j respectively. 

Also if an individual’s parameter value is less than that of the current best, then the absolute value of 
the calculated step size, ( )kIsize , is added to the current parameter value. If an individual’s parameter 

value is greater than that of the current best, then the absolute value of the step size, ( )kIsize , is 

subtracted from the current parameter value. If an individual’s parameter value is equal to that of the 
current best, then ( ) ( )

kjijijk xxIsize −  is just added to the current parameter value. In this case, the 

direction of evolution will be random. The Flowchart of cultural artificial bee colony algorithm is shown 
in Figure 1. 
 
Optimization Benchmark Test Functions 
In order to validate any new optimization algorithm, one has to validate it against standard test 
functions so as to compare its performance with well-established or existing algorithms. There are 
many test functions, so there is no standard list or set of test functions one has to follow. However, 
various test functions do exist in literature, so new algorithms should be tested using at least a subset 
of functions with diverse properties so as to make sure whether or not the tested algorithm can solve a 
certain type of optimization efficiently. In this research, a collection of twenty (20) unconstrained 
optimization test functions which are used to evaluate the performance of the proposed algorithm. 
The purpose of this collection is to give the proposed algorithms a large number of general test 
functions to be used in testing the optimization algorithm and comparison studies. For each function, 
has its algebraic expression and the standard initial point, as well as optimal values, are given. The 
Flowchart of cultural artificial bee colony algorithm is shown in Figure 1. 
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Apply Acceptance Function ( top 20 %)

Individual 

Accepted 

?

NO

Initialize population space

YES

Update Belief Space

Model the Employee CABCA Phase
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MCN ? Scout CABCA

End

NO

YES

Figure 1: Flowchart of Cultural Artificial Bee Colony Algorithm (CABCA) 
 
3.0 RESULTS AND DISCUSSION 
As discussed above, the development of four variants of CABCA are simulated in MATLAB Control/ 
Optimization tool box. The performance of CABCA variants and standard ABC is evaluated using a 
collection of twenty (20) applied mathematical optimization test functions. Henceforth, the 
comparison between CABCA variants and the standard ABC algorithm with reference to the global 
solution is estimated. The parameters setting of this work is indicated in Table 1. For each system and 
for each test case, the average of twenty (20) tests performed using MATLAB R2015a was recorded. 
The simulations were performed on HP-Pavilion g7-2270us on an Intel(R) Core i3 with a 2.40GHz 
processor and 6.00GB RAM with 64-bit Windows 8 Pro Operating System (OS). 

 
Table 1: Parameter Setting for ABC 

S/N Parameters Values 

1 Population size 50 
2 Dimension 30 
3 Maximum Cycle Number 5000 
4 Limit 50 
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Comparison of ABC with CABCA 
In this section, ABC is compared with all the variants of the proposed CABCA variants. The t-test is 
introduced to clearly indicate the statistical significance of the algorithms. This is clearly presented in 
Table 2. 

▪ ABC vs CABCA(Ns): Out of the 20 functions, CABCA(Ns) performs better than ABC on 13 
functions; while ABC performs better only on one (1) function. On the remaining six (6) 
functions, their results are similar (i.e., the performance difference is not statistically 
significant in t-tests with at least 99% degree of confidence). Thus the overall performance of 
CABCA(Ns) is better than standard ABC. 

▪ ABC vs CABCA(Sd): It can be observed from Table 2 that on all of the 20 test functions, 
CABCA(Sd) produced the best result in 11 and ABC has the best performance in 2 functions. On 
the remaining 7 functions, their results are similar.  

▪ ABC vs CABCA(Ns+Sd): From Table 2, it could be seen that the variant of CABCA that employ 
both normative and situational knowledge to guide the evolution produced the best results in 
eleven (11) functions while ABC produced best results in two (2) functions and both 
CABCA(Ns+Sd) and ABC produced similar results in seven (7) functions.  

▪ ABC vs CABCA(Ns+Nd): In this variant, it could be observed that CABCA(Ns+Nd) outpaced the 
ABC in ten (10) and two (2)cases respectively while they provide similar result in eight (8) 
cases. 

In total, the variants of CABCA (i.e. CABCA(Ns), CABCA(Sd), CABCA(Ns+Sd) and CABCA(Ns+Sd)) 
outperformed the standard ABC in all the optimization test functions. The superiority of CABCA 
justifies the essence of knowledge introduction in the belief space for self-adaptation. This has 
substantially improved the performance of the standard ABC in the search for the global solution. 
 
The following points summarize the observations on the results: 

1) Out of the 20 functions CABCA(Ns) performs best in 4 (20%) functions, CABCA(Ns+Nd) also in 4 
(20%) functions, while CABCA(Sd) and CABCA(Ns+Sd) performed best in 3 (15%) and 2 (10%) 
functions respectively. On the remaining 7 (35%) functions, their results are similar (i.e., the 
performance difference is not statistically significant in t-tests with at least 99% degree of 
confidence). Thus the overall performance of CABCA is better than ABC. 

2) Variants that employed normative knowledge prevailed in most of the test cases. Hence, 
normative knowledge seems to be the prevailing knowledge source for the optimization 
functions. 

3) The unimodal and separable functions are relatively easier to optimize. On these functions, 
the performance of ABC and CABCA variants are mostly similar. 

4) The best-performed variant is selected based on the success ratio, which is the number of 
successful runs that found the solution.  
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Table 2: Performance of the ABC algorithm and proposed CABCA algorithms on the benchmark functions. 

 
Results are averaged over 20 independent runs. Better performance by CABCA variants is marked with boldface and italic 
font. In case the best CABCA performance to ABC performance difference is not significant by t-Test with at least 99% level 

of confidence (i.e.,   = 0.99), it is marked as “Similar” 

 
 

Test 
Function 

Gmin ABC CABCA(Ns) CABCA(Sd) CABCA 
(Ns+Sd) 

CABCA 
(Ns+Nd) 

Best 
Performance 
(t-Test with  

 =0.99) 

Ackley 0.000E+00 2.1157E-13 4.1466e-15 1.9851E-13 5.7676E-15 4.3750E-15 CABCA(Ns) 
Axis parallel 0.0000E+00 9.5846E-16 1.0472E-16 8.7434E-16 5.4133E-16 8.5830E-16 CABCA(Ns) 
CM -3.0000E+00 -3.0000E+00 -3.0000E+00 -3.0000E+00 -3.0000E+00 -3.0000E+00 Similar 
DeJongf4 0.0000E+00 5.4743E-16 4.3421E-16 5.1616E-16 4.5198E-16 4.7587E-16 CABCA(Ns) 
ExpFun 1.0000E+00 1.0000E+00 0.0000E+00 1.0000E+00 0.0000E+00 0.0000E+00 Similar 
Griewangk 0.0000E+00 0.0000E+00 1.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 Similar 
Hyperelliptic 0.0000E+00 1.0000E-15 8.8185E-43 9.1751E-16 1.51583-42 1.2385E-42 CABCA(Ns) 
Michalewicz -9.6602E+00 -26.5754E+00 -2.3832E-13 -24.3579E+00 -6.0315E-15 -2.4091E-13 CABCA(Sd) 
Neumaier3 -4.9300E+03 -2.8331E+03 -2.9000E-04 -2.9523E+03 -2.9000E-04 -2.9000E-04 CABCA(Sd) 
PM1 0.0000E+00 1.2349E-15 3.7832E-27 1.2310E-15 4.0409E-30 1.3401E-45 CABCA(Ns+Nd) 
PM2 0.0000E+00 1.55319E-11 2.5959E-27 4.4354E-12 2.5959E-27 2.5959E-27 Similar 
Quartic 0.0000E+00 10.9770E+00 8.4591E-01 8.3048E+00 2.4158E-02 4.2308E-21 CABCA(Ns+Nd) 
Rastrigin 0.0000E+00 2.3628E-12 1.1806E-13 2.1652E-12 3.5527E-15 7.1059E-15 CABCA(Ns+Nd) 
Rosenbrock 0.0000E+00 1.1236E+00 5.9490E-02 1.1179E+00 1.4246E-02 2.0832E-13 CABCA(Ns+Nd) 
Sal 0.0000E+00 9.9873E-02 9.9873E-02 9.9873E-02 9.9873E-02 9.9873E-02 Similar 
Schaffer 0.0000E+00 5.7452E-15 7.4541E-19 6.5000E-15 7.2048E-19 7.6013E-19 CABCA(Ns+Sd) 
Schwefel 0.0000E+00 3.5536E+03 3.5542E+03 3.5535E+03 3.5537E+03 3.5533E+03 Similar 
Sphere 0.0000E+00 1.0875E-15 9.8378E-16 9.1795E-16 9.2855E-16 1.0886E-15 CABCA(Sd) 
Step 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Similar 
Zakharov 0.0000E+00 6.8857E-13 1.1469E-15 1.3933E-15 1.6837E-19 4.3144E-15 CABCA(Ns+Sd) 
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4.0 CONCLUSION 
In this work, a Cultural Artificial Bee Colony Algorithm (CABCA) for global optimization has been 
proposed. In the algorithm, the normative and situational knowledge inherent in the cultural 
algorithm was utilized to guide the step size as well as the direction of evolution of ABC at the 
employed bee stage. This was done in order to combat the disparity between exploration and 
exploitation associated with the basic ABC, which often lead to poor convergence and 
optimization inefficiency. Consequently, four new variants CABCA(Ns), CABCA(Sd), CABCA(Ns+Sd) 
and CABCA(Ns+Nd) were developed in MATLAB R2015a. The exploration and the exploitation 
ability of the algorithm have been balanced, and the search performance of the approach is 
improved. Various benchmark functions including unimodal separable, unimodal non-separable, 
multi-modal separable and multi-modal non-separable test functions have been applied to test 
the effectiveness of the presented method. The simulation results show that all the variants of 
CABCA outperformed the ABC and CABCA(Ns+Nd) has the overall best performance. In the future 
work, we will focus on the application of the proposed algorithms to various engineering 
problems. 
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