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 Abstract 
An orthogonal collocation-based approach to the simulation of the steady-state and transient response of a two-
pass shell and tube heat exchanger is presented. The analytical solution of the steady-state temperature profiles in 
the heat exchanger are derived. These are then used for selection of the parameters of the orthogonal solution such 
that the Euclidean norm of the error between the analytical and orthogonal collocation solution is minimized. The 
lumped parameter ordinary differential equations (ODEs) obtained from the application of the orthogonal 
collocation method are used to simulate the dynamic response of the system using the state transition matrix 
approach. Very good results were obtained consistent with other reported applications of the orthogonal collocation 
method to other types of heat exchangers in the literature. The orthogonal collocation approach is attractive in the 
efficient simulation of single or interconnected heat exchanger systems such as heat exchanger networks or heat 
exchanger-reactor systems. 

 

Keywords: Heat exchangers, orthogonal collocation, steady-state, state transition matrix, and 
transient response. 
 

1.0  INTRODUCTION 
eat exchangers are equipment that enable the transfer of thermal energy between two or 
more fluids at different temperatures. As a result, they are widely employed in several types 

of applications, including but not limited to power generation; process, chemical and food 
industries; electronics; environmental engineering; waste heat recovery; manufacturing 
industry; air conditioning; refrigeration; space industry etc. (Kakac and Liu, 2002; Gvozdenac, 
2012). In these applications, heat exchangers are frequently subjected to external disturbances 
and control which make them undergo transients. Consequently, there is often the need to carry 
out simulations of the transient responses for optimal operation and real-time regulation and 
control of the heat exchangers (Roetzel et al., 2002). The knowledge of the steady-state and 
dynamic behaviour of heat exchangers is also required both at the design and operational stages 
in order to lower future possible failures, and hence maintenance cost. The simulation of the 
dynamic response behaviour can help forecast potentially extreme operating conditions which 
may induce adverse thermal stresses in the metal parts of the heat exchanger (Bracco et. al., 
2007). 

Heat exchangers have been studied extensively, and have frequently been used to typify 
distributed parameter systems (DPS) analysis (Gutierres and Cooper, 1979). They may be 
classified into five categories (Kakac and Lui, 2002): (i) Recuperators or regenerators; (ii) Transfer 
processes: direct contact and indirect contact; (iii) Geometry of construction: tubular, plates and 
extended surfaces; (iv) Heat Transfer mechanism: single-phase and two-phase, and (v) Flow 
arrangement: parallel, counter- and cross-flow. 

Some of the early studies on heat exchangers are included in the review of Ronsenbrock (1962), 
and the text books of Harriot (1964), Gould (1969), Friedly (1972). More recent studies include 
those of Correa and Marchetti (1987), Xia et al. (1991), Williams and Adeniyi (1989, 1991), Sharifi 
(1995), Roetzel and Xuan (1992, 1999), Roetzel et al.(2002), Bracco et et., 2007), Gvozdenac 
(2012), Fratczak et al. (2014, 2016) and Ebrahimzadeh et al.(2016a,b) to mention a few. A recent 
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comprehensive review of double-pipe heat exchangers is presented by Omidi et al.(2017). From 
these works, it is seen that studies of heat exchanger dynamics have largely been based on 
frequency domain techniques (i.e. transfer functions and frequency responses), and sometimes 
numerical inversion of the transfer function to obtain time domain responses, see for examples: 
Gould 1969), Friedly (1972), Roetzel and Xuan (1999), Roetzel et al.(2002) and Luo et al. (2003). 

When direct time domain techniques have been used, they have largely been based on lumping 
of the partial differential equations that model the systems in the spatial domain using classical 
finite difference techniques. The resulting set of ordinary differential equations (ODEs) are then 
integrated using a suitable integration routine. The major drawback to using the finite difference 
method is that it often requires a large number of grid points to accurately approximate the PDE, 
and hence resulting in a very high-order lumped model that will take longer to simulate, see for 
examples: Xia et al. (1991), Nevriva etl. (2009). Moreover, such a very high-order lumped model 
is not suitable for control system design (Friedly, 1972, Srivastava and Joseph, 1984; Williams 
and Adeniyi, 1989, 1991). Due to these limitations, researchers in the field are increasingly 
employing the orthogonal collocation method (Finlayson, 1972. 1980; Villadsen and Michelsen, 
1978) as a more efficient approach to lump the PDE models with resulting much lower-order set 
of ODEs. Williams and Adeniyi (1989, 1991) presented the successful application of the 
orthogonal collocation method to a steam heated exchanger. More recently, Fratczak (2014, 
2016) and Ebrahimzadeh (2016a,b) have presented the successful application of the orthogonal 
collocation method in the simulation of the dynamics of plate-type heat exchangers. 

The present paper is concerned with the expansion of the application of the orthogonal 
collocation method in the study of the steady-state and dynamic response behaviour of other 
types of heat exchanger systems. The type of system considered in this study is the two-pass 
shell and tube heat exchanger which is also commonly employed in several thermal exchange 
applications. As far as the authors know, no dynamic simulation studies utilising the orthogonal 
collocation method has appeared in the open literature for this type of exchanger system. Yet, 
this type of heat exchanger systems can also benefit, computationally, from the highly efficient 
and resulting relatively, low-order model through application of the orthogonal collocation 
method. Thus a key objective of this work is the development of low-order steady-state and 
dynamic models that can be used for quick simulations and/or control system analysis/design of 
the heat exchanger system considered. 

 

2  METHODOLOGY 

2.1  Mathematical Model of Two-Pass Shell and Tube Heat Exchanger Systems 

The mathematical model of a heat exchanger is developed by writing an energy balance on a 
microscopic element of the exchanger. 

The schematic diagram of a two-pass shell and tube heat exchanger is shown in Figure 1. This 
type of configuration is also called a 2-pass, double-pipe heat exchanger.  

 



JER SP Vol. 24, No. 2 Williams and Adeniyi  P59-76 

 

61 

 

 
 

Figure  1: Schematic diagram of a two-pass shell and tube heat exchanger (Friedly, 1972) 

 

To derive the mathematical of model of the system, we make the following assumptions (cf. 
Friedly, 1972): (i) both fluids are in plug flow, (ii) no temperature variation in the radial direction, 
(iii) fluid properties such as densities and heat capacities are constant, (iv) there is no heat 
conduction axially and radially, (v) the outer tube is completely insulated or lagged, with no heat 
loss to the environment, (vi) heat transfer in the radial direction can be represented by a lumped 
relation of the form of Newton’s Law of Cooling with constant heat transfer coefficient, (vii) 
uniform cross-sectional area, (viii) potential energy and kinetic energy are negligible and there is 
no work, (ix) thermal capacities of the walls of exchanger are zero or negligible; then writing an 
energy balance on a microscopic element of the heat exchanger, one obtains the following 
model:  

 1 1
1 1 1 1 1 1 1 1 1 1 2 1 1 1 3= ( ) ( )p p

T T
AC Av C U S T T U S T T

t z
 

 
− − − − −

  
 (1) 

 2 2
2 2 2 2 2 2 2 2 2 1 2= ( )p p

T T
A C A v C U S T T

t z
 

 
− + −

  
 (2) 

 3 3
2 2 2 2 2 2 2 2 2 1 3= ( )p p

T T
A C A v C U S T T

t z
 

 
+ −

  
 (3) 

Eqs. (1) to (3) model the dynamics of the two-pass, shell and tube heat exchanger system, 
subject to the following initial and and boundary conditions:  

 

1 1 2 2

3 3

= 0, ( ,0) = ( ), ( ,0) = ( )

( ,0) = ( )

At t T z T z T z T z

T z T z

    

   

 

1 1 2 2

3 2

= 0, (0, ) = ( ), (0, ) = ( )

= ( ,0) = ( , )

At z T t f t T t f t

At z L T L T L t

    

   

 If we normalize the independent variables z  and t  by defining  

 1= / , = /z z L t v t L   

 and use the deviation variables  

 
1 1 1 2 2 2 3 3 3

1 1 1 2 2 2

= ( ), = ( ), = ( )

= ( ) , = ( )f f

x T T z x T T z x T T z

x f t f x f t f

− − −

− −
 

where 1( )T z , 2 ( )T z  and 3T  are the steady-state temperature profiles in the exchanger at 1f  

and 2f  conditions, then Eqs. (1) to (3) can be simplified to (cf. Friedly, 1972):  



JER SP Vol. 24, No. 2 Williams and Adeniyi  P59-76 

 

62 

 

 1 1
1 1 2 1 1 3= ( ) ( )

x x
a x x a x x
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 
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2 1 2= ( )

x x
r a x x

t z

 
− + −

 
 (5) 

 3 3
2 1 3= ( )

x x
r a x x

t z

 
+ −

 
 (6) 

Subject to the conditions   
    • Initial conditions  

 1 2 3( ,0) = 0 ( ,0) = 0 ( ,0) = 0x z x z x z  (7) 

    • Boundary conditions  

 1 1 2 2 3 2(0, ) = (0, ) = (1, ) = (1, )f fx t x x t x x t x t  (8) 

where  

 1 1 2 2 1
1 2

1 1 1 1 2 2 2 2 2

= = =
p p

U S L U S L v
a a r

C Av C A v v 
 (9) 

Eqs. (4) to (6) is a set of first-order, linear, hyperbolic partial differential equations subject to 
the simple, algebraic initial and boundary conditions given by Eqs. (7) and (8), respectively. 
 

2.2  Steady-state Analytical Solutions Method 

Unlike the case of a single-pass, shell and tube heat exchanger where it is very easy to obtain the 
steady-state analytical solutions, that of the two-pass configuration is a bit tedious to obtain as 
can be seen in Appendix A. The expressions obtained for the analytical solutions are as follows:  

 1 2
1 1 2 3( ) =

z z
x z c c e c e

 
+ +  (10) 
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     
   

 
+ + + − + − + 
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1 2 1 2

1 1 1
=

2 2
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x c c e c e c e c e c e c e

a a a a

     
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+ + + + + + + 
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 in which  

 2 2

1 1 1 2= a a a − + +  (13) 

  

 2 2

2 1 1 2= a a a − − +  (14) 
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1

1 4 2 3 4 3
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=
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q q q q q q
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=

( ) ( )

f fq x x
c

q q q q q q

−
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3

1 4 2 3 4 3
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( ) ( )
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c

q q q q q q

−

− − −
 (17) 

 with 1 2 3, ,q q q  given by the following:  
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
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21 1

3 1 1

1 1 2

2 1
=q e e

a a a

 
 +  (20) 

  

 
22 2

4 2 2

2 1 2

2 1
=q e e

a a a

 
 +  (21) 

The steady-state temperature profiles for streams 1, 2 and 3 are 1 2( ), ( )x z x z  and 3( )x z , 

respectively; while 1 fx  and 2 fx  are the corresponding steady-state inlet temperatures of the 

two streams. 
 

2.3  Orthogonal Collocation-Based Solution Method 

The mathematical model of the two-pass shell and tube heat exchanger is given by Eqs. (4) to 
(6) with the initial and boundary conditions, Eqs. (7) and (8). Even though they are linear, it is 
difficult to obtain analytical solution to these equations. The usual approach would be to apply 
the Laplace transform method and then carry-out numerical inversion to determine the transient 
response to specific input types. The drawbacks of this approach and other approaches such as 
use of finite difference techniques have earlier been highlighted. The approach that is adopted 
here is to discretize the modeling equations in the spatial variable using the orthogonal 
collocation method (Finlayson, 1972, 1980; Villadsen and Michelsen, 1978; Young, 2019), and 
then to solve the resulting system of ODEs using the state transition solution. The orthogonal 
collocation method belongs to the general class of method of weighted residuals (Finlayson, 
1972). 

The orthogonal collocation method is an attractive technique for obtaining approximate solution 
of differential equations by fitting a trial solution at selected points. The method attempts to 
minimize the residuals that result when the trial solution is substituted into the differential 
equations modeling the system, and the residuals are set to zero at selected points (known as 
the collocation points) in the spatial direction of interest. By choosing the collocation points to 
be zeros of some orthogonal polynomials, the accuracy of the solution is greatly improved 
(Villadsen and Michelsen, 1978). 

To lump the set of PDEs to ODEs using orthogonal collocation method, we assume the following 
trial solutions:  

 
1

1 1

=0

( , ) = ( ) ( )
n

k
k

k

x z t z x t
+

  (22) 

  

 
1

2 2

=0

( , ) = ( ) ( )
n

k
k

k

x z t z x t
+

  (23) 
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1

3 3

=0

( , ) = ( ) ( )
n

k
k

k

x z t z x t
+

  (24) 

in which ( ), = 01,2, , 1k z k n+  are Lagrange polynomials (Villadsen and Michelsen, 1978). 

 

Substituting the trial solutions in Eqs. (4) to (6), setting the residuals to zeros at the collocation 
points, and including the boundary conditions, we have:  

 
11

1 ,0 1 1 1 2 1 1 3

=1

( )
= ( ) ( ) ( ), =1,2, , 1

n
j

jk j f
k j j j j

k

dx t
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dt

+

− − − − − − +  (25) 
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jk j f
k j j
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dx t
r A x t A x a x x j n

dt

+
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3

3 , 1 2, 1 2 1 3

=0

( )
= ( ) ( ), = 0,1, ,

n
j

jk j n n
k j j

k

dx t
r A x t A x a x x j n

dt
+ ++ + −  (27) 

 in which we have used the boundary conditions:  
 

1 1 2 2 3 2
0 0 1 1

= , = a =f f
n n

x x x x nd x x
+ +

 

In eqs. (25) - (27), jkA  is the first collocation matrix given by:  

 
=

( )
= k

jk

z z
j

d z
A

dz
 (28) 

and the collocation points , = 0,1, , 1jz j n−  are the roots of the orthogonal Jacobi Polynomial 

(Villadsen and Michelsen, 1978):  

 
1

( , )

0
(1 ) ( ) = 0, , > 1, = 0,1, , 1j

nz z z P z dz j n     − − −  (29) 

 

The resulting set of ODEs can be easily rearranged into the standard, linear state-space form:  

 1 1= u+x A x b  (30) 

  

 =y cx  (31) 

 where the matrices 1 1,A B , and the state and input vectors are given by the following:  

 

1 1 1 1 2

(3 3) (3 3)

1 2 1

2 3 4 2

(2 )

= ( / ) ( ) /

( / ) ( ) / ( ) /

n n

a a a

a r a r

a r r a r

+  +

− + 
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1
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n n n n

n n n

A A A a r
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+ + + 

+ + +
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 

− − − 
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 1 1 1 2 2 2 3 3 3
1 2 1 1 2 1 0 1

=
T

n n n
x x x x x x x x x

+ +

 
 

x  

  

 1 2= f fx x  u  
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 = , , =1,2, , 1ija i j n  + A  

  

 = , , = 0,1, ,ija i j n  A  

are given by the first collocation matrix, while matrices 1 2 3 4, , ,T T T T  are given by the following:  

 
1 ( 1) ( 1)

1

0
=

0 2

n n+  + 
 

 

I
T  (34) 

  

 
1 ( 1) ( 1)

2

0
=

0 0

n n+  + 
 

 

I
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 ( 1) ( 1)

3

1

0 0
=

0

n n+  + 
 

 
T

I
 (36) 

  

 

0, 1

1, 1 ( 1) ( 1)

4

, 1

0 0 0

0 0 0
=

0 0 0

n n

n n n n

n n n

A

A

A

+

+ +  +

+

 
 
 
 
 
 

T  (37) 

 in which 
( 1) ( 1)

1,n n n n+  +  I I  are identity matrices with indicated dimensions. 

 

2.3.1  Orthogonal-based Steady-State and Transient Solution Methods 

The steady-state behaviour of the linear system given by Eq. (30) can be obtained by setting the 
left hand side (the time derivative) to zero, and solving the set of linear algebraic equations using 
the Gaussian Elimination routine of Villadsen and Michelsen (1978) i.e.  

 1 1 = 0s s+A x B u  (38) 

If the matrix inverse 1

1A−  exists, then one can solve for sx  as  

 
1

1 1=s s

−−x A B u  (39) 

where sx  gives the steady-state solutions at the collocation points. 

The dynamic response behaviour of the linear system given by Eq. (30) can be obtained by 
carrying out discrete-time simulation using the state-transition method. This is known to be 
computationally more efficient than carrying out numerical integration (Martens, 1969; Moler 
and Van Loan, 1978).  
 
The process is summarized as follows: the continuous-time system given by Eq. (30) is converted 
to the discrete-time equivalent given by:  
 ( 1) = ( ) ( )k k k+ +x Fx Gu  (40) 

  

 ( 1) = ( 1)k k+ +y Cx  (41) 

where F  and G  were computed using the basic Taylor series expansion method (cf. Director 
and Rohrer, 1972):  

 1
1

=0

1
= = ( )

!

k

k

e
k







A

F A  (42) 
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 1
1 1 1

0
=0

1
= = ( )

( 1)!

t k

k

e dt
k



 
 

 
+ 


A

G b A b  (43) 

Williams and Adeniyi (2001) describe reliable FORTRAN 77 routines developed to carry out the 
exponential matrix and its integral reliably and accurately. 
 

3  RESULTS AND DISCUSSION 
All the computations and simulations were carried using FORTRAN 77 due to the ready 

availability of the collocation routines and others in this programming language. 

 

3.1  Steady-State Solutions 
The steady-state collocation solution of the two-pass shell and tube heat exchanger was 
computed following the procedure described above. 

In doing this however, one must specify the collocation parameters: ,   and number of 

collocation points (including the exit =1z ), = 1N n+ . A FORTRAN 77 program was written to 
determine the best values of the collocation parameters which minimize the Euclidean norm 
between the collocation and the analytical solutions at the collocation points using the nominal 
heat exchanger parameters specified. The parameters   and   were varied between 0.5−  

to 5.0 in steps of 0.5, while N  was varied between 2 and 7. The summary of results are given 
in Table 1. 
 

Table  1: Effect of number of collocation points ( N ) and best values of   and   which 

minimize the Euclidian norm between the steady-state collocation and analytical solutions at 
the collocation points 
 

 
   

where ALFA1M, BETA1M; ALFA2M, BETA2M; and ALFA3M, BETA3M are the   and   that 
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give the minimum Euclidian norms: E1MIN, E2MIN, and E3MIN at each N  for streams 1, 2, and 
3, respectively.   
 

It is seen from the results in this table that, as expected, the accuracy of the collocation solution 
improves as the number of collocation points, N  is increased. However, it is seen that the best 
values of   and   vary somewhat with N  and the fluid streams. We observe that for 

stream 1, the best values of ( ,  ) = ( 0.5− ,5.0) for 4N  , but ( ,  ) = (0.5,0.0) for 5 7N 

. On the other hand, for stream 3, the best values of ( ,  ) = (2.5,3.5) for = 2N , but ( ,  ) = 

(0.0,0.5) for 3 7N  ; whereas in the case of stream 2, the best values of ( ,  ) = ( 0.5− ,5.0) 

for = 2,3N  while ( ,  ) = (0.0,0.0) for = 4,5,6N , and ( ,  ) = (0.5, 0.0) for = 7N . 

No explanations can be adduced for the observed variations in the values of , ,N    which 

result in the minimization of the defined Euclidean norm for the different streams. However, it 
suffices to note that Cho and Joseph (1983) have pointed out that the optimal choice of , ,N    

is dependent on the particular problem. Since no general systematic guideline is available for the 
choice of the orthogonal collocation parameters, they are best determined through exploratory 
simulation experiments such as presented here. 
 

It is clear from the plots in Figure 2 and the results in Table 1 that using 5 collocation points gives 
steady-state collocation solutions with very good accuracy.  

 
  

 

 

Figure  2: Comparison of steady-state 5-point collocation and analytical solutions for two-pass 
heat exchanger system.  

 

(a) 1 2=1.0, = 0.0f fx x ; (b) 1 2= 0.0, =1.0f fx x ; 
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Figure  3: Comparison of steady-state analytical solutions of 1x  for single- and two-pass shell 

and tube heat exchanger systems.  
 

Figure 3 shows the comparison of the analytical steady-state temperature profiles of 1( )x z  in 

the single- and two-pass heat exchangers for the same nominal values 1 = 4a , 2 =1a , and 

=1r . It can be seen from this figure that the profile of 1( )x z  in the two-pass exchanger changes 

more rapidly with z  than in the single-pass exchanger. The practical implication of this, as 

expected, is that to effect a given temperature change in 1x  (either for heating or cooling), 

requires one to use a single-pass exchanger that is longer than the two-pass exchanger. 
However, this advantage of the two-pass exchanger disappears for about > 0.65z . From Figure 

3, we also notice that the single-pass exchanger leads to a steady-state exit temperature for 1x  

which is lower or greater than that for the two-pass exchanger for cooling or heating of 1x , 

respectively. 
 

3.2  Orthogonal-Based Transient Response Simulations 

For the same nominal heat exchanger parameters specified above, Figure 4 shows the simulated 

transient response of 1(1, )x t  to a unit step change in the disturbance inputs 1 fx  and 2 fx , 

while Figure 5 shows the simulated transient response of 3(0, )x t  (i.e. exit temperature of 

stream 3) to the same inputs. The simulated responses were obtained from the lumped models 
of the two-pass exchanger using orthogonal collocation with 2, 3, 5, and 8 collocation points, and 
( ,  ) = (0.0,0.5). 

 

(a) 1 2=1.0, = 0.0f fx x ; (b) 1 2= 0.0, =1.0f fx x ; 
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Figure  4: Response of the exit temperature of stream 1, 1(1, )x t  for two-pass heat exchanger 

system. Legend: a, b, c and d for 2, 3, 5 and 8 collocation points, respectively.  
 

 
 
 

Figure  5: Step response of the exit temperature of stream 3, 3(0, )x t for two-pass heat 

exchanger system. Legend: a, b, c and d for 2, 3, 5 and 8 collocation points, respectively.. 
 
These figures show that in general, using 5 collocation points lead to transient response 
simulation results that compare very well with those obtained using 8 collocation points; this, 
for all practical purposes, being taken as the converged solution. However, it is to be noted that 
using just 3 collocation points still gives results that compare well with the converged solution. 
Furthermore, we observe that the simulation results for the two-pass exchanger in Figure 4 
display some small oscillations during the initial period of the transient. These are manifestations 
of the attempt by the global orthogonal polynomials to approximate the inherent time delay 
when sharp changes are made at the inlet of systems described by hyperbolic-type partial 
differential equations.For these cases, the order of the orthogonal collocation lumped model 

(a) For unit step change in 1 fx  (b) For unit step change in 2 fx  

(a) For unit step change in 1 fx  (b) For unit step change in 2 fx  
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may become high because a large number of collocation points must be chosen so that enough 
are placed within the region of sharp gradients or abrupt changes to provide an accurate 
representation of the solution. An alternative is to use the finite difference procedure in which 
accurate representation of the solution is then possible simply by increasing the number of grid 
points. However, as well known, this technique can become computationally prohibitive due to 
the high dimensionality of the resulting system. Note that contrary to the small oscillations in 
the initial dynamic response observed in Figure 4, much better dynamic response profiles are 
shown in Figure 5. These plots show that the orthogonal collocation method does not suffer any 

challenges in computing the dynamic response of (0, )x t  to the specified step changes in 1 fx  

and 2 fx . 

 Remarks 

A compromise between the high dimensionality of the finite difference technique and the 
inability of the orthogonal collocation technique to accurately define profiles with sharp 
gradients or abrupt changes led to the development of the technique called orthogonal 
collocation on finite elements (Carey and Finlayson, 1975; Finlayson, 1980) or what Villadsen and 
Michelsen (1978) called global spline collocation. In this technique, one uses trial functions that 
are defined over only part of the region and then piece together adjacent functions to provide 
an approximation over the entire domain. Using this technique, smaller regions can be used near 
the location of steep gradients or abrupt changes. The orthogonal collocation on finite element 
technique may be able to provide a better representation of the dynamic solution of the heat 
exchanger system during the initial transient period. However, a decision would need to be made 
about accepting the result of the global orthogonal collocation with much lower order against a 
solution using orthogonal collocation on finite element which will be of much higher order. Since 
a key objective of this work is the development of low-order steady-state and dynamic models 
that can be used for quick simulations and/or control system analysis/design, the orthogonal 
collocation on finite element approach is not investigated in this study. 
 

4  CONCLUSION 

This paper has presented the application of the orthogonal collocation method to the steady-
state and transient response simulation of a two-pass shell and tube heat exchanger. Very good 
results were obtained with five (5) collocation points against a converged solution requiring eight 
(8) collocation points. The results are consistent with studies for other types of heat exchangers 
reported in the literature. Since the literature shows that as many as twenty (20) to fifty (50) grid 
points may be required using the finite difference method, the orthogonal collocation approach 
is attractive in the efficient simulation of single or interconnected heat exchanger systems such 
as heat exchanger networks or heat exchanger-reactor systems. Since a fifteenth (15)-order 
lumped parameter system results, this may not be suitable for direct use in control system design 
without an additional step of model order reduction to bring the order of the system to a more 
manageable size. This shall be the focus of future work. 

Nomenclature  

1A   = Cross-sectional area for flow for stream 1.  

 2A    = Cross-sectional area for flow for stream 2.  

 1a    = Dimensionless parameter for flow for stream 1.  

 2a    = Dimensionless parameter for flow for stream 2  

 1 2= /r v v    = Dimensionless ratio of the velocities of fluid stream 1 and fluid 
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stream 2.  

 1pC    = Specific heat capacity of stream 1 fluid (Shell side).  

 2pC    = Specific heat capacity of stream 2 fluid (Tube side).  

 L    = Length of heat exchanger in the axial direction.  

 1S    = Stream 1 (shell side) heat transfer area per unit length of heat 
exchanger.  

 2S    = Stream 2 (tube side) heat transfer area per unit length of heat 
exchanger.  

 t    = Time, in consistent dimensional unit 

 t    = Time, dimensionless 

 1( , )T z t     = Fluid temperature of stream 1 in exchanger.  

 1( )T z    = Initial steady-state fluid temperature of stream 1 in exchanger.  

 2 ( , )T z t     = Fluid temperature of stream 2 in exchanger.  

 2 ( )T z    = Initial steady-state fluid temperature of stream 2 in exchanger.  

 3( , )T z t     = Fluid temperature of stream 3 in exchanger.  

 3( )T z    = Initial steady-state fluid temperature of stream 3 in exchanger.  

 1U    = Shell side (Stream 1) heat transfer coefficient. 

 2U    = Tube side (Stream 2) heat transfer coefficient.  

 1v    = Shell side (Stream 1) fluid velocity in the exchanger.  

 2v    = Tube side (Stream 2) fluid velocity in the exchanger.  

 1    = Shell side (Stream 1) fluid density. 

 2    = Tube side (Stream 2) fluid density.  
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APPENDIX A   DERIVATION OF STEADY-STATE ANALYTICAL SOLUTION 
Setting the left hand sides of Eqs. (3) to (5) to zero leads to the following ODEs:  

 1
1 1 2 1 1 3= ( ) ( )

dx
a x x a x x

dz
− − − −  (A.1) 

  

 2
2 1 2= ( )

dx
a x x

dz
−  (A.2) 

  

 3
2 1 3= ( )

dx
a x x

dz
−  (A.3) 

 subject to the boundary conditions given by Eq. (8) i.e.  

 

1 1

2 2

3 2

(0) =

(0) =

(1) = (1)

f

f

x x

x x

x x

 

in which 1 2 3, ,x x x  are the steady-state temperature profiles corresponding to the steady-state inlet 

temperatures 1 fx  and 2 fx . This set of ODEs can be converted to a single, third-order ODE which 

may then be readily solved as shown in what follows. 

 

Differentiating Eq. (A.1) w.r.t. z  and rearranging, we obtain  

 
2

31 1 2
1 12

= 2
dxd x dx dx

a a
dz dz dz dz

 
− + + 

 
 (A.4) 

 Adding Eqs. (A.2) and (A.3) and substituting the result into Eq. (A.4), we have  

 
2

1 1
1 1 2 3 22

= 2 ( )
d x dx

a a a x x
dz dz

− + −  (A.5) 

 

Differentiating Eq. (A.5) w.r.t. z , we obtain  

 
3 2

31 1 2
1 1 23 2

= 2
dxd x d x dx

a a a
dz dz dz dz

 
− + − 

 
 (A.6) 

 

Subtracting Eq. (A.2) from Eq. (A.3), substituting the result into Eq. (A.6), and rearranging, we 

have  
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3 2

2 21 1
1 1 2 1 1 2 3 23 2

= 2 2 ( )
d x d x

a a a x a a x x
dz dz

− − + +  (A.7) 

 From Eq. (A.1), however, we have that  

 1
1 3 2 1 1( ) = 2

dx
a x x a x

dz
+ +  (A.8) 

 Using Eq. (A.8) to substitute for 1 2 3( )a x x+  in Eq. (A.7) and simplifying, leads to the third-order 

ODE in 1x  alone  

 
3 2

21 1 1
1 23 2

2 = 0
d x d x dx

a a
dz dz dz

+ −  (A.9) 

 

From standard techniques, the general solution of Eq. (A.9) is  

 1 2
1 1 2 3( ) =

z z
x z c c e c e

 
+ +  (A.10) 

 where  

 2 2 2 2

1 1 1 2 2 1 1 2= , =a a a a a a − + + − − +  

and 1 2,c c  and 3c  are constants to be determined. 

Having obtained 1x , the expessions for the analytical solutions of 2x  and 3x  may be obtained 

from the following considerations. 

From Eqs. (A.5) and (A.8), we have  

 
2

1 1
2 3 12

1 2

1
= 2

d x dx
x x a

a a dz dz

 
− + + 

 
 

 

 1
2 3 1 1 1

1

1
= 2 2

dx
x x a x a

a dz

 
− + + 

 
 

respectively. Solving for 2x  and 3x  from these two equations, we have  

 
2

1 1 1
2 1 1 12

1 1 2

1 1
= 2 2

2 2

x d x dx
x a x a

a dz a a dz dz

  
+ − +  

   
 (A.11) 

  

 
2

1 1 1
3 1 1 12

1 1 2

1 1
= 2 2

2 2

x d x dx
x a x a

a dz a a dz dz

  
+ + +  

   
 (A.12) 

 Subsituting Eq. (A.10) into Eqs. (A.11) and (A.12) and simplifying, leads, respectively to the 

following analytical solutions for 2x  and 3x :  

 ( )1 2 1 2
2 1 2 3 2 1 3 2

1 2

1 1
=

2

z z z z
x c c e c e c e c e

a a

   
 

 
+ + + − + 

 
 

 ( )2 21 2
2 1 3 2

1 2

1

2

z z
c e c e

a a

 
 − +  (A.13) 

  

 ( )1 2 1 2
3 1 2 3 2 1 3 2

1 2

1 1
=

2

z z z z
x c c e c e c e c e

a a

   
 

 
+ + + + + 

 
 

 ( )2 21 2
2 1 3 2

1 2

1

2

z z
c e c e

a a

 
 + +  (A.14) 

Applying the 3 boundary conditions given earlier and simplifying leads to the following 3 
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simultaneous linear equations which may be readily solved for 1 2,c c , and 3c :  

 

1 1

1 2 2 2

3 4 3

1 1 1

1 =

0 0

f

f

c x

q q c x

q q c

     
     
     
          

 (A.15) 

 in which  

 
2

1
1 1

1 2 1 2

1 1
= 1

2 2
q

a a a a




 
+ − − 
 

 

 

 
2

2
2 2

1 2 1 2

1 1
= 1

2 2
q

a a a a




 
+ − − 
 

 

 

 
21 1

3 1 1

1 1 2

2 1
=q e e

a a a

 
 +  

 

 
22 2

4 2 2

2 1 2

2 1
=q e e

a a a

 
 +  

Solving for 1 2,c c , and 3c  using Cramer’s rule, we obtain  

 
1 1 4 2 3 2 4 3

1

1 4 2 3 4 3

( ) ( )
=

( ) ( )

f fx q q q q x q q
c

q q q q q q

− − −

− − −
 (A.16) 

  

 
4 2 1

2

1 4 2 3 4 3

( )
=

( ) ( )

f fq x x
c

q q q q q q

−

− − −
 (A.17) 

 

 and  
3 1 2

3

1 4 2 3 4 3

( )
=

( ) ( )

f fq x x
c

q q q q q q

−

− − −
 (A.18) 


