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Abstract  

This work presents numerical analysis for two-dimensional laminar free convection over a vertical isothermal and 
constant heat flux wall of low Prandtl number Newtonian fluids. The Bejan’s method of scale analysis is used to 
obtain the governing partial differential equations while similarity transformation is employed to transform the 
partial differential equations to ordinary differential equations. Bejan’s method of scale analysis shows the 
influence of balance of forces that affects the boundary layer flow and heat transfer. In this study, results show 
that Grashof number is the relevant dimensionless group describing the flow as against Raleigh number which 
was used to generalize the flow for both inner and outer layer other researchers. The velocity layer which is the 
inner layer closest to the solid wall dominated by the friction – buoyancy force balance is considered in this study. 
The governing equations are solved using the classical fourth order Runge – Kutta numerical method coupled 
with shooting method; multi-step differential transformation method and Keller box method and results obtained 
are compared. Results for velocity, temperature, local Nusselt number and skin friction were obtained for Prandtl 
numbers of 0.001, 0.01, 0.1, 0.5, and 0.72. The scales derived for low Prandtl flows in this study show that Grashof 
number is only applicable to the velocity boundary layer for low Prandtl flows. Results obtained were compared 
to those reported in open literature and there was 29% difference in the values obtained for local skin friction 
while the results for Nusselt number there was a difference factor of Pr1/2. 
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1.0 INTRODUCTION 

In natural convection flows, fluid undergoes motion as a result of temperature difference 
which creates a density difference within the fluid. The warmer fluid, which is less dense than 
unheated fluid rises relative to the cooler fluid. The flow may be external, in which case the 
wall is located in an infinite system of ambient fluid, or internal, in which case the wall may 
be heated, cooled or insulated. The study of natural convection of low Prandtl fluids over a 
vertical wall has attracted the interest of many investigators. In view of its application in the 
industries such as design of solar reflectors, thermo-clinical equipment, heating and cooling 
emanating from nuclear reactors, oven design etc., considerable efforts have been made to 
understand the heat transfer and flow of low Prandtl fluids over heated walls. Such study can 
be seen in the classic work by Eckert [1] adopting the method of Karman – Pohlhausen, 
Ostrach [2] and Kuiken [3] who referenced Lefevre’s asymptotic solution for low Prandtl flows. 
Experimental [9-11] and numerical [12-25] investigations have also been carried out by 
different researchers for high Prandtl numbers natural convection flows over a heated vertical 
plate for both Newtonian and non-Newtonian fluids [3, 7, 14-18]. 
 
Experimental information on natural convection in low Prandtl fluid is unfolding at a slow rate 
[8] and this shows that developing experimental models for heat transfer studies of low 
Prandtl fluids is a major challenge in the field. Previous studies are limited to Prandtl number 
of 0.003 because at lower Prandtl number, computation codes started breaking down. An 
equally important wall model is the uniform heat flux condition. In many applications, the 
wall heating effect is the result of radiation heating from the other side or, as in the case of 
electronic components, the result of resistive heating. The constant heat flux condition 
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applies to nuclear radiation heating under special conditions. Recent works using Bejan’s 
scaling method can been seen in [5, 21, 23, and 26] for high Prandtl numbers for vertical 
heated plate. Bejan [23] used scale analysis to obtain scaling laws for the dominant 
parameters in boundary layer flows and heat transfer. In the study carried out by Bejan and 
Khair, results obtained using these scaling laws was in agreement with the exact solutions of 
Shapiro and Fedorovich [26] for High Prandtl numbers. For the low Prandtl numbers, 
inappropriate momentum equation was used for low Prandtl numbers [21] and as a result, it 
is the aim of this study to present the appropriate Bejan’s scaling laws and appropriate 
dimensionless group for Low Prandtl numbers and the transformed equations along with the 
boundary conditions are solved numerically [23, 25] for the local Nusselt numbers, local skin 
friction, velocity and temperature distributions for low Prandtl numbers. Scaling analysis 
shows that Grashof number is only applicable in the velocity boundary region in the range of 
Prandtl numbers less than 1 while most researchers have been using this dimensionless 
number for all low and high Prandtl numbers velocity and thermal boundary layers.  
 
2.0 PHYSICAL MODEL, GOVERNING EQUATIONS AND BOUNDARY CONDITIONS  
 

 

Figure 1: Boundary layer over a heated vertical wall for low Prandtl fluids 

Consider a steady, two-dimensional boundary layer flow of an incompressible Newtonian 
fluid over a hot semi – finite vertical wall situated in a quiescent bulk of fluid as shown in 
Figure 1. The wall has either a uniform surface temperature (UST) or uniform heat flux (UHF) 
boundary condition. Applying boundary layer model and Boussinesq approximations, the 
governing equations for convective, laminar and steady flow can written be as; 
 
∂𝑢

∂𝑥
+
∂𝑣

∂𝑦
   

= 0                                                                                                                                                                (1) 
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𝑢
∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂𝑦

= 𝜐
∂2𝑣

∂𝑥2
+ 𝑔𝛽(𝑇
− 𝑇∞)                                                                                                                                                           (2) 

 

𝑢
∂𝑇

∂𝑥
+  𝑣

∂𝑇

∂𝑦

= 𝛼
∂2𝑇

∂𝑥2
                                                                                                                                                    (3) 

 
The associated boundary conditions are; at 𝑥 = 0; 𝑢 = 𝑣 = 0, 𝑇 = 𝑇0(UST); 

−𝑘
∂𝑇

∂𝑥
= 𝑞𝑤(UHF) ; as 𝑥 → ∞;  𝑢 → 0, 𝑇 → 𝑇∞.  

 
Also, at 𝑦 = 0; 𝑢 = 0, 𝑇 = 𝑇0. 
Using Bejan’s method of scale analysis [23], where x ~ δv, y ~ h, δv<< H, the boundary layer 
equations (1) to (3) scale as; 
𝑢

𝛿𝑣

≈
𝑣

𝐻
                                                                                                                                                            (4) 

𝑢
𝑣

𝛿𝑣
, 𝑣
𝑣

𝐻

≈ 𝜐
𝑣

𝛿𝑣2
, 𝑔𝛽𝛥𝑇                                                                                                                                          (5) 

𝑢
𝛥𝑇

𝛿𝑣
, 𝑣
𝛥𝑇

𝐻

≈ 𝛼
𝛥𝑇

𝛿𝑣2
                                                                                                                                                       (6) 

From equation (6), we obtain the velocity scale as 
𝑣

≈
𝛼𝐻

𝛿𝑣2
                                                                                                                                                           (7) 

Equations (4) to (6) gives us the balance between friction and buoyancy forces in the velocity 
boundary layer of thickness δv. Substituting the expression in equation (7) into equation (5) 
we obtain the scales for the velocity boundary layer δv shown in equation (8).  
 
𝛿𝑣(𝑦)

=  {
𝑦𝐺𝑟𝑦

−1
4⁄  For UST case

𝑦𝐺𝑟𝑦
−1

5⁄  For UHF case
                                                                                                                                                           (8) 

Where, 𝐺𝑟𝑦 =
𝑔𝛽𝛥𝑇

𝜐2
𝑦3, 𝐺𝑟∗𝑦 =

𝑔𝛽𝑞"

𝜐2𝑘
𝑦4, 𝑅𝑎∗𝑦 =

𝑔𝛽𝑞"

𝛼𝜐𝑘
𝑦4, Pr =

𝜐

𝛼
, 𝐵𝑜𝑦 =

𝑔𝛽𝛥𝑇

𝛼𝜐
𝑦3Pr 

The dimensionless variables are, 
𝜂

=
𝑥

𝛿𝑣(𝑦)
                                                                                                                                                                                                      (9) 



JER SP Vol. 24, No. 2  Ottah et al.  P26-39 

 

29 
 

𝜃(𝜂)

=

{
 
 

 
 
𝑇 − 𝑇∞
𝑇0 − 𝑇∞

 for UST case

𝑇 − 𝑇∞
𝑞0𝛿𝑣(𝑦)

𝑘

 for UHF case
                                                                                                                 (10) 

𝜓(𝜂)

= {
𝛼𝑅𝑎𝑦

1
4⁄ Pr

3

4𝑓(𝜂)   forUSTcase

𝛼𝐶Pr𝑦
4

5𝑓(𝜂)           forUHFcase
                                                                                                    (11) 

Where 𝐶 = (
𝑔𝛽𝑞′′

𝛼𝑣𝑘
.
1

Pr
)
−1

5⁄
 

The stream function 𝜓(𝜂) satisfies the continuity equation by 𝑢 =
∂𝜓

∂𝑦
;  𝑣 = −

∂𝜓

∂𝑥
 

 
The partial differential equations (2) and (3) are transformed into ordinary differential 
equations (12) and (13) using similarity formulation. 
𝑚𝑓′2 + 𝑛𝑓𝑓′′

= −𝑓′′′

+ 𝜃                                                                                                                                                          (12) 

−Pr [𝑛𝑓𝜃′ + 𝐴(
4

5
−𝑚)𝑓′𝜃]

= 𝜃″                                                                                                                             (13) 
The boundary conditions are  
𝑓(0) = 𝑓′(0) = 0,  𝜃(0) = 1 or 𝜃′(0) =  − 1

𝑓′(∞) → 0,  𝜃(∞) → 0
                                                                            (14) 

Where 𝐴 = {
0 for UST case
1 for UHF case

 , 𝑚 = {
1
2⁄ for UST case

3
5⁄ for UHF case

, 𝑛 = {
−3

4⁄ for UST case

−4
5⁄ for UHF case

 

The wall shear stress and local skin friction coefficient are given by equations (15) and (16) 
respectively. 
𝜏𝑤

= {

−𝜇𝛼

𝑦2
𝐺𝑟𝑦

3
4⁄ 𝑓′′(0)for UST case

−𝜇𝛼

𝑦2
𝐺𝑟∗𝑦

3
5⁄ Pr𝑓"(0) for UHF case

                                                                                            (15) 

𝐶𝑓,𝑦

=

{
 
 

 
 

𝜏𝑤

(
𝜇𝛼

𝑦2
𝐺𝑟𝑦

3

4)
for UST case

𝜏𝑤
𝜇𝛼

𝑦2
𝐺𝑟∗y

3

5Pr
for UHF case

                                                                                                                (16) 

The local heat transfer coefficient and Nusselt number are given by equations (17) and (18) 
respectively. 
 ℎ =

{
−𝜃′(0)

𝑘

y
𝐺𝑟𝑦

1

4 for UST case 

1

𝜃′(0)

𝑘

𝑦
𝐺𝑟∗𝑦

1/5  for UHF case
                                                                                                             (17)  
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{
 
 

 
 
𝑁𝑢𝑦

Gry
1/4

= −𝜃′(0)     for UST case

𝑁𝑢𝑦

Gr∗y
1/5

=
1

𝜃′(0)
       for UHF case

                                                                                                 (18) 

 
Table 1 shows a comparison between the scales used by Kuiken [3] in his work and those used 
in this study obtained using Bejan’s scale analysis [23]. 
 
2.1 METHOD OF SOLUTION 
The system of coupled, non-linear ordinary differential equations (12) and (13) are solved first 
by converting it to a system of first order ODEs such that; 

𝑧1 = 𝜃

𝑧2 = 𝑧1′ = 𝜃′
𝑧3 = 𝑓

𝑧4 = 𝑧3′ = 𝑓′

𝑧5 = 𝑧4′ = 𝑓′′

                                                                                                                                           (19)  

 
We have the non-linear equations to be; 

𝑧1′ = 𝑧2

𝑧2′ =
3

4
Pr𝑧2𝑧3

𝑧3′ = 𝑧4
𝑧4′ = 𝑧5

𝑧5′ = 𝑧1 −
1

2
𝑧4
2 +

3

4
𝑧3𝑧5

                                                                                                                       (20) 

 
2.1.1 Runge - Kutta method 
From equation (20); Newton iteration method is computed for

( ) ( )1 1 2 4( ) 0  ( ) 0;f z and f z → = → =   with a step size of η = 0.01 and shooting success 

criterion maximum of   7[ '( ), ( )]  10f    −   for the range of Pr numbers given were achieved 

and are used for the computations of the result using Runge – Kutta formulation. 
 
2.1.2 Multi – step Differential Transformation Method (DTM) 
The solution of the transformed equation (20) yields: 

𝑧′1 = 𝑧1 + 𝑧1(𝑘)𝜂
𝑘

𝑧′2 = 𝑧2 + 𝑧2(𝑘)𝜂
𝑘

𝑧′3 = 𝑧3 + 𝑧3(𝑘)𝜂
𝑘

𝑧′4 = 𝑧4 + 𝑧4(𝑘)𝜂
𝑘

𝑧′5 = 𝑧5 + 𝑧5(𝑘)𝜂
𝑘

                                                                                                                                  (21) 

 
Due to convergence, equation (21) solution is only valid near ɳ = 1, thus, multi – step 
transformation is used. Performing differential transformation, we have the solution for

( ) and ( )f    to be of the form; 
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𝑓𝑖(𝜂) =∑(
𝜂

𝑦𝑖
)

𝑘

𝑖=0

𝑓�̅�(𝑘)

𝜃𝑖(𝜂) =∑(
𝜂

𝑦𝑖
)𝜃�̅�

𝑘

𝑖=0

(𝑘)

                                                                                                                        (22) 

 
Where i, k, yi represents the i-th sub-domain, the number of power series and sub-domain 
interval respectively. ( ) and ( )ii

f k k are transformed functions of ( ) and ( )i if k k respectively. 

Equation (20) is then transformed using multi-step DTM as shown in equation (23). 
 

 

                      

 

 

 

                 

(23) 

2.1.3 Keller Box method 

Keller box method is used in discretizing equations (12) and (13) such that, an introduction 
of new independent variables were formed. Thus, we have; 
 

( , );  ( , );  t( , );  ( , )

' ;  ' ;  '

u x v x x x

f u u v s t

     


= = =                                                                                               (24) 

Equations (12) and (13) transforms to, 

23
'

4 2

3
' Pr

4

u
v fv

t ft




= + − 



=
                                                                                                            (25) 

Applying finite difference scheme, centre-difference derivatives is used for the discretization 
of the governing equation. Equation (25) is transformed into the following; 
 

( )

( ) ( )

2
1

2 3 2

0

3 4

-1

4 5

5 1 4 4 3 5

0 0

 [0,

( )
( 1)

1

3 1
( 1) Pr ( ) (

4 1

1
( 1) ( )

] [ , ] ;     1

1
( 1) ( )

1

1 1 3
( 1) ( ) ( ) ( ( ) (

1 2 4

i i

k

i i

i

i i

i i i

i i

k k

i i

i i

for k

z k
z k y

k

z k y z i z k i
k

z k y z k
y k y y k

z k y z k
k

z k y z k z i z k i z i z k i
k

=

= =



+ =
+

+ = −  +

+ =
  +

+ =
+

 
+ = − − + −      + 



 

     

















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-12

1/2 1/2 1/2

-1

1/2 1/2

3 1
( ) ( )

4 2

3
Pr( )

4

j j

j j j j

j

j j

j j j

j

v v
f h fv u

h

v v
h ft

h





− − −

− −

  −
= − + − +    

  

  −
= − +    

                                                                             (26) 

Applying Newton method of linearization for non-linear system of equation and tri-diagonal 
matrix, a non-singular matrix formation whose element are determined is given by the 
relationship; 
 

1[ ] [A ] [B ][ ]j j j j −= − 
                                                                                                              (27) 

For i = 1, 2, 3 . . . j 

A ,B ,j j j
are calculated using forward sweep methods and yields i

o iv  where 
i  is a small 

parameter. A MATLAB code was developed for the numeric solution. 
 
3.0 RESULTS AND DISCUSSION 
Scaling investigation of natural convection of low Prandtl fluids over a heated vertical wall is 
analyzed and the result obtained shows the effect of Prandtl number on the temperature 
profile, velocity profile, local Nusselt number and local skin friction for velocity boundary layer. 
Tables 2 and 3 show a comparison between the different solution methods used in this study 
to obtain the Nusselt number and skin friction for various values of Prandtl number when the 
heated wall is isothermal and for constant heat flux boundary conditions. The results obtained 
using all the solution methods were in good agreement. This is also seen in Tables 4 and 5 
which show results of temperature and velocity profiles for both isothermal and constant 
heat flux conditions. The method of solution adopted shows that level of accuracy of the 
multi-steps between intervals of 0.001 has an error of 10-5. 
 
Table 1: Scales in a velocity boundary layer along a vertical wall for low Prandtl fluids 

  
Kuiken[3] 

UST 

Present study 

UST UHF 

Similarity Variable  ( )  ( )
1/4

2Pry

y
Gr

x
 1/4

y

x
Gr
y

 1/5

*y

x
Gr
y

 

Velocity Boundary 
Layer thickness, ( )v  

( )
1/4

2Pryx Gr
−

 
1/4

yyGr −  1/5

*yyGr −  

Thickness of wall jet, 

( )T  
- 1/4

yyBo −  1/5

*yyBo −  

Velocity scale, v 1/2 2PryGr
x

  1/2 PryGr
y

  2/5

* PryGr
y

  

Local Nusselt number 
( )

1/4
2

1/2

/ Pr

0.60040 0.32385Pr

yNu Gr =

−

 
 

1/4

yGr  

 
1/5

*yGr  
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Local Skin friction 

2
1/2

2

0

1.0699496 1.001023Pr
d f

dn
=

= −  
3/4

2
/ Prw yGr
y




 
 
 

 3/5

*2
/ Prw yGr
y




 
 
 

 

 

Table 2: Comparison of the methods of solution for isothermal condition 

 

Table 3: Comparison of the methods of solution for uniform heat flux condition 

 

The difference between the results obtained in this study using scale analysis and those 
obtained by Kuiken [3] was a factor of Pr1/2.This is due to the fact that the dimensionless group 
use to describe the flow is general as in this case, Grashof number use to describe the inner 
layer while other researchers generalise Raleigh number for both inner and outer layer of 
boundary layer. Table 6 shows that if we take into consideration this factor, the results 
obtained using scale analysis will be similar to those of Kuiken. Results presented in Figures 2 
and 3 show the temperature profiles along a heated wall for the isothermal and constant heat 
flux boundary conditions respectively. It can be seen that in both cases as Prandtl number 
decreases there is a remarkable increase in thermal thickness. As the Prandtl number 
decreases from 0.72 to 0.1, it approaches an asymptote rapidly than for extreme low values 
of Pr << 0.01. This explains why most low Prandtl number fluids have high thermal 
conductivity and as a result, the thermal diffusion will be an effective mode of heat transfer 
and this effect is applied in the design of sandwiched walls for cooling.  
 
 

Pr Case 

'(0)  ''(0)f  

RK4 DTM 
Keller 
Box 

RK4 DTM 
Keller 
Box 

0.001 

UST 
 

-0.01866978 -0.01867012 -0.01861470 -1.47288745 -1.46986940 -1.46986785 

0.01 -0.05698121 -0.05698245 -0.05698457 -1.39699878 -1.38658213 -1.38658774 

0.1 -0.16274635 -0.16274956 -0.16274568 -1.21512154 -1.20959531 -1.20959221 

0.5 -0.31195451 -0.31196001 -0.31196254 -1.00863254 -1.00074236 -1.00074632 

0.72 -0.35683121 -0.35684101 -0.35684459 -0.95604012 -0.95589969 -0.95589415 

Pr Case 

1 / '(0)  ''(0)f  

RK4 DTM 
KELLER 

BOX 
RK4 DTM 

KELLER 
BOX 

0.001 

UHF 
 

0.04727241 0.04725451 0.04725478 13.7483658 
-
13.7247201 

-13.7245658 

0.01 0.11496525 0.11477941 0.11477256 6.70013261 
-
6.68975560 

-6.68975648 

0.1 0.26348368 0.26230943 0.26230458 3.12854853 
-
3.12731523 

-3.12738987 

0.5 0.43892747 0.43830833 0.43830621 1.76999884 
-
1.75148896 

-1.75146897 

0.72 0.48730799 0.48546815 0.48546777 1.55032451 
-
1.52157482 

-1.52157380 



JER SP Vol. 24, No. 2  Ottah et al.  P26-39 

 

34 
 

 
Figure 2:  Effect of Prandtl number on the temperature profile for UST case 

 

 

Figure 3: Effect of Prandtl number on the temperature profile for UHF case 
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Figures 4 and 5 show the results for dimensionless velocity and the plots show that as the 
Prandtl number reduces the velocity increases but approaches an asymptote. These results 
were compared with the scale used by Kuiken as shown in Table 1 to compute the velocities 
for Prandtl number of 0.003 to 0.72 for isothermal case and a difference of order of magnitude 
of 2 is obtained. Figure 6 shows a comparison between the convective heat transfer from a 
vertical wall with constant temperature and uniform heat flux respectively in terms of the 
local Nusselt number. The heat transfer coefficient and local Nusselt number expressions are 
given by equations (17) and (18). Increasing the value of Prandtl number increases the Nusselt 
number but a rapid rate of increase can be seen in UHF for Prandtl numberPr > 0.3. This 
shows greater heat dissipation for the UHF case at Prandtl numbers greater than 0.3. This 
trend can be seen in the thermal cooling and heating designs for electrical conduction 
between non – metallic and metallic surfaces.  
 

 

Figure 4: Effect of Prandtl number on the velocity profile for UST case 
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Figure 5: Effect of Prandtl number on the velocity profile for UHF case 

 
Figure 6: Comparison between local Nusselt number results for the UST and UHF cases 

 

Figure 7 shows results of the comparison between local skin friction for the UST and UHF cases 
respectively. As the Prandtl number increases, the local skin friction reduces until it reaches 
an asymptotic value. Large values for skin friction were obtained for constant heat flux case 
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and this trend could be as a result of temperature non-uniformity on the heated wall. The 
application of the result showed is the crystallization of liquid metal cooling at extreme low 
temperatures in modern reactors. This result also shows that using an isothermal boundary 
condition leads to under prediction of the local skin friction values. 
  

 
Figure 7: Comparison between local skin friction results for the UST and UHF cases 

 

CONCLUSIONS 
Scaling investigation of natural convection fluid flow of low Prandtl fluids over a heated 
vertical wall has been analyzed for constant temperature (USF) and constant heat flux (UHF) 
boundary conditions. Appropriate scaling laws obtained by Bejan’s scale analysis and similarity 
formulation were used to transform the governing partial differentiation equations for 
boundary flows to ordinary differential equations. These equations were solved using three 
different methods of solutions for Prandtl number ranging 0.001 to 0.72. Results obtained 
showed that all numerical methods used in this study to solve the governing equations were 
in good agreement and Prandtl number has a very significant effect on the heat transfer 
analysis for both cases investigated in this study. The scaling method used shows clearly the 
interplay of forces that drive the natural convection and fluid flow within the boundary layer. 
The effect of Prandtl number on the temperature profile, velocity profile, local Nusselt 
number and skin friction are reported and results for the constant temperature and constant 
heat flux boundary conditions within the inner layer were also presented. 
 
NOMENCLATURE 
 

Bo            
f  
F  
g  
Gry  

Boussinesq number  
Dimensionless stream function in velocity boundary layer 
Dimensionless stream function in temperature boundary layer 
Acceleration due to gravity (m/s2) 
Grashof number 
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Gr*y  
h  
H  
k  
Nu  
Pr  
qw”  
Ray  
Ra*y  
T  
T0  
T∞  
u, v   
v  
x, y  
 
Greek symbols 
α  
β  
δV  

∆T  
η  
θ  
ν  
ρ  
τ  
Ψ  
 
Subscripts 
x, y  
w  
∞  
 
Superscripts 
‘  
*  

Grashof number based on heat flux 
Heat transfer coefficient (W/m2K) 
Height (m) 
Thermal conductivity (W/mK) 
Local Nusselt number 
Prandtl number 
Heat flux at the wall (W/m2) 
Rayleigh number 
Rayleigh number base on heat flux 
Temperature (K) 
Wall temperature (K) 
Free stream temperature (K) 
Velocity components in the x-, y-directions (m/s)  
Vertical velocity scale 
Cartesian coordinates 
 
 
Thermal diffusivity (m2/s) 
Coefficient of thermal expansion (1/K) 
Velocity boundary layer thickness (m) 
Temperature difference (K) 
Similarity variable 
Dimensionless temperature 
Kinematic viscosity (m2/s) 
Density (kg/m3) 
Shear stress (N/m2) 
Stream function 
 
 
Modified parameter 
Wall condition 
Ambient condition 
 
 
Derivative, d/dɳ 
Uniform surface 
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