
                                  Journal of Engineering Research, Volume 21 No 1 March 2016                                 31 
 

Analytical Solutions of Thermal-Mechanical Vibration Models 
of Pinned-Pinned Fluid-Conveying Single-Walled Carbon 

Nanotubes Resting on Elastic Foundation 
 

A. T. Adebusoye and A. A. Oyediran 
Department of Mechanical Engineering 

University of Lagos, Lagos, Nigeria 
Email: abeti1111@gmail.com ; ayooyediran@hotmail.com 

 
 
Abstract 
Pinned-pinned single-walled carbon nanotubes (SWCNTs) have attracted a lot of interest in recent years 
due to their suitability for a wide range of applications, such as field emission and vacuum microelectronic 
devices, nanosensors, and nanoactuators. Based on two simply supported beam-bending models and 
mode analysis, analytical solutions are developed in the present study to deal with the resonant frequency 
of a SWCNT.  The resonant frequency shift of the pinned-pinned SWCNTs caused by change in 
temperature and interaction with both a Winkler and a Pasternak elastic medium are examined in order to 
explore the suitability of SWCNTs as a cooling device and resonators in quantum computer designs. The 
simulation results reveal that the increase in temperature and the non-local parameter decreases the 
resonant frequency. In contrast, the resonant frequency increases with increase in the stiffness of the 
elastic medium except that Tai-Ping Chang model is insensitive to changes in the Pasternak constant. 
Furthermore, the modified Haw-Long Lee model predicts a larger flutter compared to the modified Tai-
Ping Chang et al. model. Therefore, the modified Tai-Ping Chang model is better used to analyze the 
thermal-mechanical vibration of a SWCNT. 
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1.0   INTRODUCTION 

Carbon nanotubes (CNTs) have been known to have remarkable mechanical and 

physical properties leading to many potential applications (Dresselhaus et al., 2004). 
The mechanical vibration properties of CNTs have been investigated using experimental 
techniques (Yakobson and Avouris, 2001; Yao et al., 2008) and theoretical analytical 
techniques (Natsuki et al., 2005). There are two categories of theoretical analysis 
techniques for studying the mechanical behaviour of CNTs. First is the atomic modeling 
techniques and second is the continuum-based techniques (such as the elastic beam 
and the elastic shell theories) (Liew et al., 2004). Many studies related to the field are 
depicted in the references (Yoon et al., 2006; Natsuki et al., 2004; Wang et al., 2006; 
and Zhang et al., 2005). The non-local elasticity theory was first initiated by Eringen 
(2002). The importance of nonlocal elasticity theory stimulated the researchers to 
investigate the properties of the micro/nanostructures more accurately and conveniently. 
Application of nonlocal continuum theory to nanotechnology was initially reported by 
Peddieson et al. (2003). 
 
The non-local elasticity theory takes into consideration the nanoscale effects. It 
assumes that the stress at a point is a function of the strain at every point in the material 
domain. The effect of thermal changes on the frequencies of the nanotubes has been 
the focus of recent research works. Using a non-local Timoshenko beam theory; 
Benzair et al. (2008) investigated the effect of temperature changes on the free vibration 
of single-walled carbon nanotubes. Wang et al. (2008) studied thermal effects on free 
vibration of fluid conveying single-walled carbon nanotubes. 
 
In this paper, the non-local Euler-Bernoulli elastic beam theory is used to investigate the 
vibrational behavior of a simply supported single-walled carbon nanotubes (SWCNTs) 
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embedded in a two-parameter elastic medium. Both Winkler-type and Pasternak-type 
models are employed to simulate the interaction of the SWNTs with a surrounding 
elastic medium more accurately. In addition, the influences of non-local effects and 
temperature changes on frequency response of the model are examined. 
 
2.0     METHODOLOGY 
 
2.1.     Theoretical Framework 
The models of Chang et al. (2011) and Haw-Long Lee et al. (2009) are considered for 
this work, but, taking into consideration the effects of the vibration characteristics. 
 
2.1.1    Model 1: Modified Tai-Ping Chang and Mei-Feng Liu model 
The model equations of Chang et al. (2011) have been modified to take into 
consideration the effects of temperature, non-local parameter and the two elastic 
foundation parameters.  
 
Based on the non-local elasticity theory, the thermal-mechanical behaviour of a SWCNT 
conveying fluid can be mathematically modeled as in Eq. 1. 
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where, term (   ) accounts for the small size effects. From thermal elasticity 
mechanics, force    due to thermal moments can be written as in Eq. 2 (Chen, 1987): 
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Introducing the following dimensionless parameters: 
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Substituting Eq. 3 into Eq. 1, a dimensionless form of the governing equation and 
boundary conditions for model 1 can be obtained as follows in Eqs. 4-5: 
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2.1.2       Model 2: Modified Haw-Long Lee and Win-Jin Chang model  
The model equations of Haw-Long Lee et al. (2009) have been modified to take into 
consideration the effects of temperature, non-local parameter and the two elastic 
foundation parameters, thus can be expressed as in Eq. 6: 
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The corresponding boundary conditions for pinned-pinned are expressed in Eq. 7. 
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Introducing the following dimensionless parameters: 
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Substituting Eq. 8 into Eq. 6, a dimensionless form of the governing equation and 
boundary conditions for model 1 can be obtained as in Eq. 9: 
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2.2 Method 
The models will be analyzed by carrying out eigenvalue analysis to determine the 
natural frequencies.  
 
2.2.1 Eigenvalue analysis for natural frequencies  
The natural frequencies of the models can be obtained analytically following Blevins 
(2001), and using half-range Fourier series as shown in the unpublished notes by 
Oyediran (2014) (detail is presented in appendix). 
 
For Eq. 4 and Eq. 9, assuming a solution of the form: 
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Substituting Eq. 10 into Eq. 4 and Eq. 9 and then the equations can be recast in the 
form: 
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Where * += the vector of the mode shape,     = the frequency of vibration 

Elements for the Model 1 are in Eq. 12: 
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Elements for the Model 2 are in Eq. 13: 
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Setting the determinant of the matrix [A] equal to zero, the dimensionless natural 
frequencies can be obtained. 
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3.0   RESULTS AND DISCUSSION 
The results of the influence of different parameters on the stability  of the buckled 
solution of the systems were examined. Here flow velocity, v, is used as the 
independent varied parameter. 
 

 
 
 
 

 
 
 
 
The first mode buckling velocity remained constant at a value of 1 while the second 

mode buckling velocity reduced with increase in     in for the modified Tai-Ping Chang 
model. Figures 1 and 2 of simulation for the modified Tai-Ping Chang model carried out 

at     ,      ,       ,  ̅ = 0, and      was increased from 0 to 0.1. However, for 
the Haw-Long Lee et al. (2009) model both the first mode and the second mode 

buckling velocities remained constant despite increase in     . For both models, the 
flutter size was also observed to increase with increase in the nonlocal parameter,  .  
 

Figure 1(a): Effect of non-local parameter on 
real frequency for Modified Tai-
Ping Chang model 

 

Figure 1(b):  Effect of non-local parameter on 
imaginary frequency for 
Modified Tai-Ping Chang model 

 

Figure 2(a):  Effect of non-local parameter on real 
frequency for Modified Haw-Long Lee 

model 

Figure 2(b):  Effect of non-local parameter on 
imaginary frequency for Modified Haw-
Long Lee model 
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Figures 3 and 4 reveal simulation carried out at     ,      ,  ̅= 0,        and 
varying,    from 0 to 3. The Winkler foundation coefficient    has no significant effect on 
the resonant frequencies, buckling velocities and flutter size in the modified Tai-Ping 
Chang et al. model, however, an increase in it hardens the carbon nanotube and delays 
buckling.  

 
 
 

Figure 3(a):  Effect of Pasternak constant on real 
frequency for Modified Tai-Ping 
Chang model 

 

Figure 3(b):  Effect of Pasternak constant on 
imaginary frequency for modified Tai-
Ping Chang model 

 

Figure 4(a):  Effect of Pasternak constant on real 
frequency for Modified Haw-Long Lee 
model 

 

Figure 4(b):  Effect of temperature on real 
frequency for Modified Tai-Ping Chang 
model 

Figure 5(a):  Effect of Winkler constant on real 
frequency for Modified Tai-Ping Chang 
model 

 

Figure 5(b):  Effect of Winkler constant, k1 on 
imaginary frequency for modified Tai-
Ping Chang model 
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It was observed that varying values of the mass ratio has no effect on the buckling 
velocities. But increase in the mass ratio causes a corresponding increase in flutter size. 
This is depicted in Figures 7 and 8 the effect of dimensionless mass ratio on the 

models. The simulation was carried out at a     ,       ,   = 0,        and   

Figure 6(a): Effect of Winkler constant on real 
frequency for Modified Haw-Long Lee 
et al. model 

 

Figure 6(b):  Mode shape of modified Haw-Long 
Lee et al. model for varying Winkler 
constant 

 

Figure 7(a):  Effect of mass ratio on real frequency 
for Modified Tai-Ping Chang model 

 

Figure 7(b):  Effect of mass ratio on imaginary 
frequency for modified Tai-Ping Chang 
model 

 

Figure 8(a):  Effect of mass ratio on real frequency 
for Modified Haw-Long Lee model 

 

Figure 8(b)  Effect of mass ratio on imaginary 
frequency for Modified Haw-Long 
Lee model 
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varying from 0.1 to 0.5.  In addition, for the modified Haw-Long Lee model it was 
observed that for values of b greater than 0.1, the second mode never buckles and for 

values of   greater than 0.3, the first mode flutter was incomplete while the second 
mode never flutter 
 

 
 
 

 
 
 
 
Increasing temperature causes reduction in first mode resonant frequency but a reverse 
effect on the second mode resonant frequency, as shown in Figures 9 and 10 The 

simulation was carried out at      ,      ,      ,     and varying  ̅ from -0.5 to 
0.5. Similarly, increasing temperature decreases first mode buckling velocity while the 
second mode buckling velocity increased with increasing temperature.  The flutter size 
was also observed to increase with increasing temperature. 
 
4.0 CONCLUSION 
Nonlocal Euler-Bernoulli theory with thermal effect has been applied to obtain the 
frequency response of a SWCNT in a two parameter elastic medium. Two models have 
been used to model the behaviour of the fluid conveying SWCNT interacting with both a 
Winkler-type and Pasternak-type elastic medium with Pinned-Pinned end conditions. 
The results point out the following outcomes: 

Figure 9(a): Effect of temperature on real frequency 
for Modified Tai-Ping Chang model 

 

 

Figure 9(b):  Effect of temperature on imaginary 
frequency for Modified Tai-Ping Chang 
model 

 

Figure 10(a):  Effect of temperature on real 
frequency for Modified Haw-Long Lee 
model 

 

Figure 10(b):  Effect of temperature on real 
frequency Modified Haw-Long Lee et 
al model 
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(i) Increasing the temperature decreases the natural frequency but increases the 

second mode natural frequency of the modified Tai-Ping Chang et al.   
(ii) The modified Haw-Long Lee et al. model predicts an increases in the resonant 

frequency as the Pasternak elastic constant,   , increases, but the resonant 
frequency of the modified Tai-ping Chang et al model is insensitive to changes in 
the Pasternak elastic constant. 

(iii) Increasing  the Winkler elastic constant,   ,  increases the resonant frequency for 
both models. 

(iv) Increasing the non-local parameter,    , decreases the resonant frequency for 
both model. 

(v) The modified Tai-Ping Chang et al. model buckles earlier than the modified Haw-
Long Lee et al. model. 

(vi) Non-local theory predicts a larger flutter in the modified Haw-Long Lee et al. model 
compared to the modified Tai-Ping Chang et al. model.  
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APPENDIX 
Proof of half-range Fourier series  
 

     
 

 
∫    .

   

 
/    .

   

 
/

 

 
   

 

     
 

 
∫ 2   ((   ) .

  

 
/)      ((   ) .

  

 
/) 3

 

 
   

 

     
 

 
[
    ((   ).

  

 
/)

((   ).
 

 
/)

 
   ((   ).

  

 
/)

((   ).
 

 
/)

]

 

 

 

 

     
  

 (     )
0(   )   ((   ) .

  

 
/)   (   )   ((   ) .

  

 
/)1 

 

     
  

 (     )
{
(   )   ((   ) )   (   )   ((   ) )

   
 

 

1f   (   ) is odd, then  (   ) is always odd and 1f   (   ) is even, then  (   ) is 
always even.    Evaluating (   )   (   )      : 
 
So  

     {
  

 (     )

 
 

 

Thus,     .
   

 
/  ∑        .

   

 
/          

 


