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Abstract 

The detection of carboxyhaemoglobin (COHb), a remarkably stable yet harmful complex present in body cells, 

presents a significant challenge. Elevated COHb levels can cause symptoms like headaches, nausea, dizziness, 

and, in severe cases, coma or death. This study util ised thirteen predictive variables, including sex, body mass 

index, glucose, and blood pressure. The COHb levels in Lagos State, Nigeria, were classified using various machine 

learning algorithms and variables. Evaluation metrics such as accuracy, precision, and confusion matrices were 

employed for assessment. Highly varied but negatively correlated factors significantly influenced ML predictions 

of COHb. Glucose was identified as the most influential predictor, due to food oxidation, it combines with oxygen 

and dissociates carbon monoxide from the blood. While seven out of twelve models that did not overfit during 

the training phase were retained, the best-performing model was an artificial neural network (ANN) with seven 

hidden layers of six neurons each. Apart from being the only model that correctly classified the rare individual of 

the fourth group by avoiding misplacement into the first group of many persons in the confusion matrix, the ANN 

scheme achieved the highest scores of 70% and 64% in accuracy and precision, respectively, during 

generalisation, alongside other optimal performances. 
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1.0 INTRODUCTION 

Red blood cells contain a crucial protein known as haemoglobin, which has the unique 

ability to bind with carbon monoxide (CO), forming the carboxyhaemoglobin (COHb) 
complex—a highly stable molecule. Haemoglobin also interacts with oxygen (O 2), leading 

to the formation of oxyhaemoglobin, a less stable compound responsible for oxygen 
transport within the body. O2 is vital for oxidative phosphorylation, the final step in cellular 

respiration, which produces adenosine triphosphate (ATP), the primary energy source for 

cells. This process relies on the diffusion of oxygen across the alveolar membrane into blood 
tissues, facilitating essential metabolic functions in all body cells, including those in muscles, 

organs, and the brain (Crecelius et al., 2015; Prockop and Chichkova, 2007; Piantadosi, 
2004). The affinity of haemoglobin for oxygen is influenced by various factors, including the 

partial pressure of oxygen in the blood, the presence of gases like carbon monoxide and 
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carbon dioxide, and the pH of the blood. Elevated levels of CO in the body often result from 
incomplete combustion of carbonaceous materials, such as wood, natural gas, and gasoline, 

leading to an excess of CO in the atmosphere. Notably, haemoglobin exhibits an affinity for 
CO approximately 250 times greater than its affinity for oxygen. Consequently, elevated CO 

levels can pose serious health risks, as the stability of COHb retains bound CO in areas of 
the body that require oxygen. Prolonged exposure to elevated CO concentrations and low 

oxygen levels can significantly increase COHb levels, resulting in adverse effects such as 
headaches, nausea, dizziness, cardiac dysfunction, and, in severe cases, coma or even death 

(Mattiuzzi and Lippi, 2020; Huzar et al., 2013; Jones and Kennedy, 1982; Rodkey et al., 
1974).  
 
The monitoring of COHb levels primarily relies on established methodologies rooted in 
spectrometry, spectrophotometry principles, and chromatography. Prominent techniques  
include pulse oximetry, laboratory co-oximeters, UV-Vis spectrophotometry, and gas 
chromatography (Bemtgen et al., 2021; Samuel et al., 2021; McNair et al., 2019; Bickler and 

Rhodes, 2018). Pulse oximetry offers an indirect method for determining COHb levels by 
measuring oxygen saturation in haemoglobin within the pulsating capillary bed, illuminated 

under light. However, it faces limitations in differentiating accurately between haemoglobin 
bound to oxygen and haemoglobin bound to other gases, despite the advantage of non-

invasiveness. Spectrometry-based lab co-oximeters can assess various haemoglobin forms, 
including COHb concentrations, with notable accuracy. Nevertheless, these devices are 

associated with significant costs, require expert operation, demand substantial blood 
samples, and yield results over an extended period. UV-Vis spectrophotometry utilises 

energetic radiation and tailored analytical protocols to determine compound 
concentrations in blood samples. In contrast, pocket-sized spectrometers employ low-

energy infrared radiation, available in smartphones, to scan blood samples for COHb levels. 
These compact instruments offer affordability, ease of use, and accessibility, albeit with 

slightly lower precision compared to lab co-oximeters. Gas chromatography, a distinct 
analytical tool, separates or releases gases from blood before quantification using light-

sensitive equipment, often involving heat detectors. However, this method, while accurate, 
is relatively sophisticated, time-consuming, and costly.  

 
Given the limitations of clinical techniques for monitoring COHb levels, including high cost, 
time consumption, and invasiveness due to blood sample collection, alternative approaches 
like electronic sensors or wearables and regression analysis have gained prominence (Lee 
et al., 2021; Adjiski et al, 2019; Wu, 2019; Oluwatusin et al., 2019). While it is known that 
patients with premedicated heart and brain issues are more susceptible to CO poisoning, 
researchers have also shown that high COHb concentration in the blood can be liked to 
certain factors such as gender, age, BMI, smoking behaviour, ambient serenity, and 
maternal and foetal CO levels (Abbey et al., 2022; Hampson and Hauff, 2008; Prockop and 
Chichkova, 2007, Piantadosi, 2004). Various mathematical models, including the 
Alternating-Direct Implicit Scheme, Finite volume, Gaussian distribution, Fick's law of 
diffusion, Monte Carlo simulation, time-series analysis, and non-Newtonian mechanics, 
have been applied to the prediction of COHb as well as carbon monoxide diffusion 

(Oluwatusin et al., 2019; Sobamowo, 2016; Guarnaccia et al., 2014; Isa et al., 2013; 
Oghenejoboh and Adiotomre, 2012; Maynard and Robert, 1999). Machine learning (ML), a 
subset of artificial intelligence, empowers electronic circuits and computer systems to learn 
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and enhance their performance through experience. ML algorithms identify patterns in data 
for tasks such as classification, clustering, regression, and identification. They require 

training before task execution, with different learning approaches available, including 
supervised, unsupervised, semi-supervised, and reinforcement learning (Obot et al., 2023; 

Murphy, 2012). In recent times, machine learning algorithms, such as support vector 
machines, random forest, and artificial neural networks, have been used in medical 

diagnosis (Wang et al., 2023; Hanis et al., 2022, Shi et al., 2022). 
 

This study is particularly relevant to Lagos State, Nigeria, a rapidly developing and densely 
populated city with over 21 million residents, although its findings can be applied to other 
locations. The rapid industrialisation and urbanisation in Lagos have led to severe air 
pollution, primarily driven by transportation emissions, increasing the risk of respiratory 
illnesses such as asthma and chronic bronchitis (Adedokun and Owode, 2019; Oluwole et 
al., 2016). Given the high population density and pollution levels, this study focuses on the 
application of machine learning algorithms to address the health risks associated with 

elevated COHb concentrations. To the best of our knowledge, in addition to the knowledge 
dearth of studies on COHb from developing countries like Nigeria, there has been no 

previous attempt to employ machine learning for modelling COHb levels in this specific 
context, despite the existence of various experimental and mathematical models for gas 

pollution and its impact on humans (Abbey et al., 2022; Adedokun and Owode, 2019; 
Oluwatusin et al., 2019; Oluwole et al., 2016; Oghenejoboh and Adiotomre, 2012).  

 
2.0 MATERIALS AND METHODS 

2.1 Data collection 
Stringent guidelines govern the handling of blood samples containing carboxyhaemoglobin 

to ensure the accurate detection of low concentrations of pollutants in the specimens. 
Health Research Ethics Committee of the Lagos State University Teaching Hospital with the 

approval number HREC: 19/12/2008a and Lagos State Ministry of Health Research Ethics 
Committee. 

 
A total of 516 consented volunteers (Table 1) from all 20 local government areas of Lagos 

State (Fig 1) were recruited for this study. Various instruments, such as a weighing machine, 
metre rule, manometer, glucometer, and other necessary materials, were used for data 
collection during visits to the different sites. This data collection period began on 6th June 
2016 and concluded on 19th August 2016. Each participant provided 8ml of blood for COHb 
lab analysis. To preserve the blood specimens, fluoride oxalate was used in securely 
stoppered tubes. These tubes were filled and stored in the dark in a deep freezer 
refrigerator, maintaining a temperature of 4°C. It's important to note that in the presence 
of oxygen at atmospheric partial pressure, these samples may undergo exchange with the 
carbon monoxide present in the samples, a process accelerated by exposure to light and 
heat. 
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Figure 1:  Location areas of the study population. 
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Table 1: Number of blood samples collected from consented volunteered from each LGA  

S/no LGA No of participants  
1 Agege 20 
2 Ajeromi/Ifelogun  16 
3 Alimosho 30 
4 Amuwo Odofin 16 
5 Apapa 24 

6 Badagry  22 
7 Epe 18 

8 Eti Osa 28 
9 Ibeju Lekki 21 

10 Ifako/Ijaye 20 
11 Ikeja 29 

12 Ikorodu 25 
13 Kosofe  21 

14 Lagos Island 32 
15 Lagos Mainland 21 

16 Mushin 18 
17 Ojo 20 

18 Oshodi/Isolo 20 
19 Shomolu 21 

20 Surulere 20 
 

 

2.2 Machine Learning Algorithms and Error Assessment 

In this study, the ML models were implemented through a four-step pipeline that included imputation, 
data normalisation, feature selection, and classification. Python, utilising essential libraries such as Scikit-

learn, TensorFlow, Pandas, NumPy, and specific packages like extreme gradient boost and cat-boost, 
served as the programming language. The data collected during the field experiment encompassed 

information such as sex, age, height, weight, waist circumference, body mass index (BMI), glucose level, 
systolic blood pressure (SYS), and diastolic blood pressure (DIA). Additional variables were derived 

through mathematical manipulations of the initial data to enhance the stability and performance of 
machine learning algorithms. These included SYS/DIA, DIA/SYS, weight/age, and height/age ratios. In 

total, thirteen factors were used as predictors in classifying the measured COHb concentration, with 
missing values imputed using the median of the observations. The classification groups were composed 

of four different ranges of COHb percentages in the blood samples. The first group included cases with 
less than 1% COHb, the second group consisted of individuals with COHb levels between 1% and 1.8%, 
the third group covered values greater than 1.8% and up to 3.5%, while the final group included those 

with COHb percentages exceeding 3.5%. 
A comprehensive evaluation of various classification algorithms was conducted, including random forest 

(RF), artificial neural network (ANN), naive bayes, logistic regression, support vector machines (SVM) 
(using kernels like linear, polynomial (poly), radial basis function (RBF), and sigmoid), k-nearest neighbours 

(KNN), extreme gradient boost (XGB), light gradient boost machine (LGBM), cat-boost, and bagging 
classifier. The selection of these algorithms was based on their established state-of-the-art performance 

in data analysis and their interpretability when employing feature-attribution techniques. Hyper-
parameters were transformed using the Yeo-Johnson transformation to make variables more normally 

distributed, reducing skew in the raw data. Additionally, a data scaling approach normalised the limits 
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between -1 and 1, in addition to the power transformation procedure in Scikit-learn. Further details on 
the training techniques for the ML algorithms can be found in Table 2. 

 
 

Table 2: Training modalities of the ML algorithms in Python, where except for the mentioned features, 

the rest of the systems were left at default. 

S/no ML Model Training Techniques 

1 logistic regression {penalty = l2, maximum iteration = 100} 
2 mnlogit_mod {maximum iteration = 1000} 
3 SVM (linear, poly, 

RBF, sigmoid) 
{probability = True, random state = 0} 

4 naïve bayes {Guassian_NB} 
5 KNN {neighbours = 3} 

6 ANN {various hidden layers (varied between 3 and 13), 
number of neurons (varied between 1 and 10), batch 

sizes = 265, maximum iteration = 1000, validation 
fraction = 0.02, random state= 0} 

7 decision trees {random state = 0} 
8 RF {n-estimators (varied between 1 and 10), random 

state = 0} 
9 bragging classifier {base estimator = rfc2, iteration = 15, max samples = 

0.75, max features = 0.75, random states = 0} 
10 XBG {random state = 0} 

11 LGBM {random state = 0} 
12 cat-boost {verbose = 0, random state = 0} 

A meticulous two-step process was adopted for model selection, training, and evaluation to mitigate the 

risk of overfitting. Initially, a stratified approach was employed to partition the dataset into a training set 
(72%) and a hold-out test set (28%). The entire training set was then utilised for model training and 
calibration, while the hold-out test set was used to assess the calibrated models. To evaluate the 
generalisability of models to new settings with limited data, an internal-external validation procedure was 
implemented using a bootstrap-based approach. This methodology facilitated the estimation of model 
performance when exposed to new data in different settings, offering valuable insights into their 
robustness and applicability beyond the original dataset.  
Several metrics like accuracy, F1, precision, and confusion matrix were used to evaluate the performance 
of the machine learning models. A confusion matrix is a table that is often used to describe the 
performance of a classification model on a set of test data for which the true values are known. Accuracy 
measures how often the classifier correctly predicts. It is the ratio of the number of correct predictions 
and the total number of predictions. It is expressed as: 
Accuracy = (TP + TN) / (TP + TN + FP + FN) 

where TP is the true-positive, TN is the true-negative, FP is the false-positive, and FN is the false-negative. 
Precision explains how many of the correctly predicted cases actually turned out to be positive. It is 

defined as the number of true positives divided by the number of predicted positives. Its expression is: 
Precision = TP / (TP + FP) 

Recall or sensitivity explains how many of the actual positive cases we were able to predict correctly with 
our model. It is defined as the number of true positives divided by the total number of actual positives.  
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Recall = TP / (TP + FN) 
The F1 score is the harmonic mean of precision and recall. It is maximum when precision is equal to recall. 

F1 = 2 × (Precision × Recall) / (Precision + Recall) 
Finally, the ROC-AUC, which means Receiver Operator Characteristic (ROC) - Area Under the Curve (AUC). 

While ROC is a probability curve that plots the TPR (true positive rate) against the FPR (false positive rate) 
at various threshold values and separates the signal from the noise, AUC is the measure of the ability of a 

classifier to distinguish between classes. 
 

3.0 RESULTS AND DISCUSSION 
3.1 Predictors Correlations 

Following the coded procedure, the 516 individuals from the field experiment were automatically split 
into two sets: the training set, which included 254 individuals in the first group, 64 in the second group, 
55 in the third group, and 3 in the fourth group; and the testing set, comprising 94, 24, 21, and 1 individual  
in the respective four groups. Although the extent by which a factor predicts depends on the given ML 
algorithm, COHb specifically exhibited minimal dependence on gender, waist circumference, and height 

but demonstrated a stronger correlation with glucose levels, DIA/SYS, and BMI. However, other factors 
that could significantly impact COHb prediction included weight, age, systolic blood pressure, and diastolic 

blood pressure (Fig 2). Furthermore, the derived variables exerted a more pronounced influence than 
individual predictors. For instance, while height and age had a limited impact on COHb, their combined 

effect contributed to a more accurate prediction. 
The correlation coefficients between COHb and the predictors are consistently weak, with values 

generally falling below 10%, whether positive or negative (Fig 3). Furthermore, COHb displays a positive 
relationship with only four out of the thirteen variables, which include height, waist, SYS/DIA, and 

height/age. In order of importance, the five factors out of the lot that indirectly impact on COHb include 
glucose level, BMI, weight, sex, and DIA. The positive correlation values range from 0.0019 to 0.04, 

whereas the negative correlations range from -0.0045 to -0.089. Notably, the comparison between Figs 2 
and 3 suggests that machine learning algorithms appear to rely more on negatively correlated predictors  

than the positive ones in most cases. For instance, a typical ML model exhibits a higher dependence on 
glucose, DIA/SYS, BMI, DIA, weight, and SYS, which have negative relationship with COHb compared to 

height, waist, SYS/DIA, and height/age.   
 

 
Figure 2: A typical impact of the predictors on the outcome of COHb from random forest 
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Figure 3: Correlation coefficient values between all the variables used in this study. 

 
 

3.2 Retained ML Models 
Since this is a classification problem designed to function as a diagnostic tool rather than an imaging task, 
ML algorithms achieving 100% in error functions like accuracy and precision during the training phase 

were considered prone to overfitting and subsequently excluded. The affected algorithms include decision 
trees, XBG, LGBM, and cat-boost. However, the optimal configurations for RF and the ANN were identified 

and retained. The random forest performed best with 10 n-estimators, while the artificial neural network, 
which, aside from the input and output layers, had seven hidden layers, each containing six neurons, 

demonstrated superior performance. Additionally, as the hold-out test section indicates generalisation 
capacity, models with low performance, scoring below a cutoff of 65% accuracy during this phase, were 

also excluded, although a score of 70% and above is deemed desirable. 
At times, the error terms exhibited disparities among themselves by displaying different trends, especially 

when disregarding the overfitting models that were dropped, in which all error terms were consistently 
100%. So, because the testing phase reflects responses to unfamiliar circumstances and generalisation 

capabilities, greater emphasis is placed on it than on the training phase. In the testing phase (Table 3), 
accuracy scores range between 70.00% and 65.00%, F1 scores fall within 63.00% and 53.13%, ROC -AUC 

values range between 67.48% and 49.91%, while precision varies between 63.58% and 44.93%. 
Throughout this phase, the ANN consistently achieves the top results in all error terms. However, while 

the log regression ML algorithm maintains the lowest grades in F1 and precision, it pairs with SVM-poly in 
having the lowest score in accuracy, while SVM-linear has the lowest value in ROC-AUC. Nevertheless, 
during the training phase (Table 4), accuracy ranges between 97.87% and 67.55%, F1 values range from 
97.84% to 54.17%, ROC-AUC varies between 99.92% and 47.35%, and precision falls between 97.91% and 
45.63%. While all the highest values pertain to random forest, all the lowest values do not necessarily 
belong to a single ML model. 
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Table 3: Error terms for the retained ML models at the testing phase 
S/no Model Accuracy 

(%) 
F1 (%) ROC-AUC (%) Precision (%) 

1 Log regression 65.00 53.13 57.59 44.93 

2 SVM-linear 67.14 53.94 49.91 45.08 

3 SVM-poly 65.00 54.63 59.86 48.78 
4 SVM-RBF 67.14 53.94 63.43 45.08 

5 ANN 70.00 63.00 67.48 63.58 
6 random forest 66.43 61.39 67.07 60.25 

7 bragging classifier 65.71 57.77 61.00 60.92 
 
 
Table 4: Error terms for the retained ML models at the training phase 

S/no Model Accuracy 
(%) 

F1 (%) ROC-AUC (%) Precision (%) 

1 log regression 68.62 57.25 64.49 74.92 
2 SVM-linear 67.55 54.47 47.35 45.63 

3 SVM-poly 73.94 67.17 78.62 80.36 
4 SVM-RBF 67.55 54.47 81.03 45.63 

5 ANN 74.20 70.01 81.45 72.03 
6 random forest 97.87 97.84 99.92 97.91 

7 bragging classifier 88.03 87.10 99.38 88.57 
 

 
Due to the skewness of the data in this study, where a greater number of individuals can be found in a 

given group compared to the others, a high score in error terms can be misleading. The confusion matrix 
(Fig 4) can help reveal the extent to which the groups with few individuals were predicted. Fig 4(a) 

presents the ideal confusion matrix for the problem at hand, and the comparison of the perfect situation 
with the rest reveals the inadequacy of the ML models. The worst scenario arose from models that failed 

to classify individuals into any other groups except placing everyone in the 1st class. The affected ML 
algorithms were the respective SVM with linear and RBF kernels (Figs 4(b) and 4(c)). The apt generalisation 

of the ANN model with the hold-out test set regarding the error terms is also evident in the confusion 
matrix. Given that members of the first class are 94 in number, the ANN (Fig 4(g)) and log regression (Fig 
4(e)) algorithms predicted the closest to 94, identifying 91 persons. In the second group where 24 are 
expected, the closest to that is the random forest, followed by both ANN and bragging classifier (Fig 4(h)) 
at 5 and 2 persons, respectively. In the third group where 21 individuals belong, ANN (Fig 4(g)), random 
forest (Fig 4(d)), bragging classifier (Fig 4(h)), and SVM-poly (Fig 4(f)) placed 5, 3, 2, and 1 in it, respectively. 
However, in the last group with a lone individual, no ML model predicted it correctly. 
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Figure 4(a-h): Multiple confusion matrixes for COHb classifications for individuals in Lagos State, Nigeria.  
 

 
3.3 Discussion 

Clearly, factors demonstrating a negative relationship with COHb respond appropriately to machine 
learning modelling. Glucose, which exhibits the highest negative correlation with COHb, represents the 
natural sugar content or a type of carbohydrate found in foods. Cells derive energy from glucose for 
survival. During food oxidation under various reaction steps, oxygen reacts with glucose to form carbon 
dioxide, water, and energy for the eventual production of ATP, as illustrated in Equation 1: 
𝐶6𝐻12𝑂6 + 6𝑂2  = 6𝐶𝑂2  + 6𝐻2𝑂 + 𝐸𝑛𝑒𝑟𝑔𝑦                                            (1) 
As indicated in Equation 1, a relatively low glucose level suggests sufficient oxygen content in the body, 
supporting metabolism that releases carbon dioxide during respiration. In addition to tissue oxygenation, 
O2 eliminates CO from haemoglobin based on their partial pressures, lifespan stages, or exposure time, 
concentrations of other gases such as nitric oxide, and other factors including body temperature and 

enzyme or protein actions (Crecelius et al., 2015; Ryter et al., 2006; Jones and Kennedy, 1982; Rodkey et 

al., 1974). Given the role of glucose in cell metabolism and its implications for oxygen availability in blood 
cells, it is unsurprising that glucose significantly influences the prediction of COHb. However, while 

SYS/DIA and DIA/SYS share a 15% relationship with glucose (Fig 3), the latter, with a notably negative 
correlation, has a more pronounced effect on the prediction of COHb compared to the former, as depicted 

in Fig 2. Importantly, while SYS/DIA holds a correlation coefficient value of 4% with COHb, DIA/SYS, which 
predicts the molecule more accurately, has a correlation coefficient value of -3.5%. Moreover, the 

relatively significant impact of BMI or weight on COHb prediction may be attributed to a larger body's 
increased capacity to retain substantial amounts of food, fat, or glucose. Consequently, the inverse 

correlation between O2 and CO allows machine learning algorithms to easily recognise glucose, BMI, and 
weight as robust predictors of COHb. Notably, these three factors —glucose level, BMI, and weight—

exhibit the highest negative correlation coefficient values with COHb (Fig 3). Inevitably, maintaining a 
healthy diet or administering synthesised glucose to patients can positively influence the symptoms of CO 

poisoning. 
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Except for gender, factors that correlate relatively well with COHb, whether positively or particularly 
otherwise, are likely to have an impactful tendency to predict the molecule (Figs 2 and 3). Gender, as an 

exception to this trend, is likely due to its lack of variation, notwithstanding its comparatively high 
negative correlation with COHb. Although gender has little impact on diagnosing COHb concentration in 

this study, it could be essentially impactful under the same height and age with mathematical modelling 
(Oluwatosin et al., 2019). 

This study has several limitations, primarily stemming from its narrow scope. Although the study targeted 
individuals at risk of CO poisoning, such as roadside traders and open-market traders exposed to highly 

polluted air in Lagos, the participants were volunteers from the community who were neither hospitalised 
due to CO poisoning nor systematically exposed to CO gas. As a result, the results may not fully capture 
the experiences of all individuals who are unwell or exhibiting symptoms of elevated COHb concentration, 
despite some individuals being found to have elevated levels of CO poison in their bodies. Furthermore, 
the absence of laboratory animal testing limits the researchers' ability to comprehensively explore various 
possibilities, such as evaluating the associated risks of CO poisoning with different exposure times.  
Given that a high concentration of CO significantly impacts vital organs like the heart and brain, individuals 

with pre-existing medical conditions require special attention. Furthermore, apart from factors like 
smoking habits, workplace incidents, and fire accidents, elevated CO exposure can occur during activit ies 

such as cooking with kerosene, wood, coal, charcoal, and cooking gas, as well as travelling in vehicles 
running on fossil fuels. It is noteworthy that the effects of CO poisoning tend to diminish after a few days 

with proper oxygen intake.  
 It is possible that if models like decision trees, XBG, LGBM, and cat-boost were expansively trained (Wang 

et al., 2023), they would have been suitable for this exercise. This is because RF with 2 n-estimators 
(though not shown here) fell into such a category, achieving 100% accuracy, F1, ROC-AUC, and precision 

scores during the training phase. The RF model used in the study performed optimally during the training 
section yet could not sustain such performance during the testing phase, indicating some degree of 

overfitting. Future studies could evaluate the impacts of tuning system parameters and consider 
hybridising either ML with mathematical models or optimisers like genetic algorithm and particle swamp 

optimisation to ascertain if there is a better approach (Obot, 2024). 
Given the escalating adoption of machine learning algorithms in the medical sciences, a study of this 

nature holds invaluable potential for applications in the clinical treatment of CO-related issues, such as 
burn treatment, sleeping disorders, mental health problems, and respiratory diseases. Notably, there is a 

growing trend in the development of wearables—medical devices that integrate artificial intelligence 
techniques with sensors for non-invasive diagnosis. The significance of wearables is particularly 
pronounced in remote regions with limited access to advanced clinical examination facilities.  
Furthermore, the inherent unpredictability in the recurrence of medical conditions, coupled with 
constraints such as limited hospital facilities, bed space, and manpower, as well as frequent changes in 
weather, lifestyles, and dietary patterns, underscores the necessity for physicians to remotely monitor 
their patients. Wearables or oximeters equipped with alert systems can play a crucial role in providing 
timely alarms whenever necessary (Lee et al., 2021; Adjiski et al., 2019; Wu, 2019). 
Those with a relatively high percentage of COHb in their blood samples are at risk of CO poisoning and its 
effects, but they fall into the 3rd and 4th groups with relatively few numbers. As such, ML models are 
somewhat incapacitated in handling the issue at hand because enough data is required for them to learn. 
Unfortunately, only one person falls into the fourth class (with a percentage of COHb in the blood sample 
higher than 3.5) in the hold-out test set, and the only ML model that could reveal that the individual does 

not belong to the first group is the ANN (Fig 4(g)). To err on the side of safety, precautionary measures or 
treatment may be necessary when a subject does not fall into the first group when using the 
recommended ANN scheme. 
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4.0 CONCLUSION 

To address the constraints associated with time wastage, high costs, painful body piercing, and 
inaccuracies linked to clinical and mathematical methods for determining carboxyhaemoglobin, this study 

employed a comprehensive use of machine learning algorithms to classify the complex levels in the 
densely populated Lagos State of Nigeria for a possible development of wearable. Thirteen inputs, namely 

sex, age, height, waist circumference, BMI, glucose, diastolic BP (DIA), systolic BP (SYS), DIA/SYS, SYS/DIA, 
weight/age, and height/age, were utilised to classify four levels of COHb. The machine learning algorithms 

included artificial neural networks (with various hidden layers), support vector machines (employing 
different kernels such as linear, radial basis function, sigmoid, and poly), k-nearest neighbour, decision 
trees, random forest (with varied n-estimators), naive bayes, and well-known classifiers like bagging, XGB, 
LGBM, and cat-boost. Using a 72:28 ratio to partition the data into training and testing groups, statistical 
measures for evaluating the ML models included accuracy, confusion matrix, precision, and F1. Models 
with 100% accuracy during the training phase and those scoring below 65% during the testing phase were 
excluded. The conclusions in this study are as follow: 

i. Machine learning (ML) demonstrates the ability to identify factors strongly linked to oxygen, 
particularly in the context of oxidation, such as glucose and BMI, when modelling COHb. 

Additionally, this capability could be extended to capture the inherent relationship between the 
quantity of carbon monoxide and oxygen in human blood. Therefore, administration of glucose 

may be helpful in the management of CO poisoning.  
ii. Negatively correlated variables wield a more pronounced impact than positively related factors in 

ML-based COHb modelling. 
iii. In instances where a predictor lacks adequate variation, its contribution to ML modelling is 

minimal, regardless of the level of negative correlation with COHb. 
iv. Frequently, the influence of a variable derived through the mathematical manipulation of two 

variables surpasses that of each individual variable. 
v. An artificial neural network structure with 7 hidden layers, each comprising 6 neurons, 

demonstrated optimal performance during testing and is consequently recommended for COHb analysis 
in the Python environment for the city of Lagos, Nigeria. This model stood out with a 70% accuracy score 

during testing and yielded the most favourable confusion matrix output. 
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