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Abstract
The detection of carboxyhaemoglobin (COHb), a remarkably stable yet harmful complex present in body cells,
presents a significant challenge. Elevated COHb levels can cause symptoms like headaches, nausea, dizziness,
and, in severe cases, coma or death. This study utilised thirteen predictive variables, including sex, body mass
index, glucose,and blood pressure. The COHb levels in Lagos State, Nigeria, were classified using various machine
learning algorithms and variables. Evaluation metrics such as accuracy, precision, and confusion matrices were
employed for assessment. Highly varied but negatively correlated factors significantly influenced ML predictions
of COHb. Glucosewas identified as the most influential predictor, dueto food oxidation, itcombines with oxygen
and dissociates carbon monoxide from the blood. Whileseven out of twelve models that did not overfit during
the training phasewere retained, the best-performing model was anartificial neural network (ANN) with seven
hidden layers of six neurons each. Apartfrom beingthe only model that correctly classified therareindividual of
the fourth group by avoiding misplacementinto the firstgroup of many persons in the confusion matrix, the ANN

scheme achieved the highest scores of 70% and 64% in accuracy and precision, respectively, during
generalisation, alongside other optimal performances.
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1.0 INTRODUCTION

Red blood cells contain a crucial protein known as haemoglobin, which has the unique
ability to bind with carbon monoxide (CO), forming the carboxyhaemoglobin (COHb)
complex—a highly stable molecule. Haemoglobin also interacts with oxygen (02), leading
to the formation of oxyhaemoglobin, a less stable compound responsible for oxygen
transport within the body. O is vital for oxidative phosphorylation, the final stepin cellular
respiration, which produces adenosine triphosphate (ATP), the primary energy source for
cells. This process relies on the diffusion of oxygen across the alveolarmembrane into blood
tissues, facilitating essential metabolic functions in all body cells, including those in muscles,
organs, and the brain (Crecelius et al., 2015; Prockop and Chichkova, 2007; Piantadosi,
2004). The affinity of haemoglobin for oxygen is influenced by various factors, including the
partial pressure of oxygen in the blood, the presence of gases like carbon monoxide and
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carbon dioxide, and the pH of the blood. Elevated levels of CO in the body often result from
incomplete combustion of carbonaceous materials, such as wood, natural gas, andgasoline,
leading to an excess of CO in the atmosphere. Notably, haemoglobin exhibits an affinity for
CO approximately 250 times greater than its affinity for oxygen. Consequently, elevated CO
levels can pose serious health risks, as the stability of COHb retains bound CO in areas of
the body that require oxygen. Prolonged exposure to elevated CO concentrations and low
oxygen levels can significantly increase COHb levels, resulting in adverse effects such as
headaches, nausea, dizziness, cardiac dysfunction, and, in severe cases, coma or even death
(Mattiuzzi and Lippi, 2020; Huzar et al., 2013; Jones and Kennedy, 1982; Rodkey et al.,
1974).

The monitoring of COHb levels primarily relies on established methodologies rooted in
spectrometry, spectrophotometry principles, and chromatography. Prominent techniques
include pulse oximetry, laboratory co-oximeters, UV-Vis spectrophotometry, and gas
chromatography (Bemtgen etal., 2021; Samuel et al., 2021; McNair et al., 2019; Bickler and
Rhodes, 2018). Pulse oximetry offers an indirect method for determining COHb levels by
measuring oxygen saturation in haemoglobin within the pulsating capillary bed, illuminated
under light. However, it faces limitations in differentiating accurately between haemoglobin
bound to oxygen and haemoglobin bound to other gases, despite the advantage of non-
invasiveness. Spectrometry-based lab co-oximeters can assess various haemoglobin forms,
including COHb concentrations, with notable accuracy. Nevertheless, these devices are
associated with significant costs, require expert operation, demand substantial blood
samples, and vyield results over an extended period. UV-Vis spectrophotometry utilises
energetic radiation and tailored analytical protocols to determine compound
concentrations in blood samples. In contrast, pocket-sized spectrometers employ low-
energy infrared radiation, available in smartphones, to scan blood samples for COHb levels.
These compact instruments offer affordability, ease of use, and accessibility, albeit with
slightly lower precision compared to lab co-oximeters. Gas chromatography, a distinct
analytical tool, separates or releases gases from blood before quantification using light-
sensitive equipment, often involving heat detectors. However, this method, while accurate,
is relatively sophisticated, time-consuming, and costly.

Given the limitations of clinical techniques for monitoring COHb levels, including high cost,
time consumption, and invasiveness due to blood sample collection, alternative approaches
like electronic sensors or wearables and regression analysis have gained prominence (Lee
etal.,, 2021; Adjiski et al, 2019; Wu, 2019; Oluwatusin et al., 2019). While it is known that
patients with premedicated heart and brain issues are more susceptible to CO poisoning,
researchers have also shown that high COHb concentration in the blood can be liked to
certain factors such as gender, age, BMI, smoking behaviour, ambient serenity, and
maternal and foetal CO levels (Abbey et al., 2022; Hampson and Hauff, 2008; Prockop and
Chichkova, 2007, Piantadosi, 2004). Various mathematical models, including the
Alternating-Direct Implicit Scheme, Finite volume, Gaussian distribution, Fick's law of
diffusion, Monte Carlo simulation, time-series analysis, and non-Newtonian mechanics,
have been applied to the prediction of COHb as well as carbon monoxide diffusion
(Oluwatusin et al.,, 2019; Sobamowo, 2016; Guarnaccia et al., 2014; Isa et al., 2013;
Oghenejoboh and Adiotomre, 2012; Maynard and Robert, 1999). Machine learning (ML), a
subset of artificial intelligence, empowers electronic circuits and computer systems to learn
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and enhance their performance through experience. ML algorithms identify patterns in data
for tasks such as classification, clustering, regression, and identification. They require
training before task execution, with different learning approaches available, including
supervised, unsupervised, semi-supervised, and reinforcement learning (Obot et al., 2023;
Murphy, 2012). In recent times, machine learning algorithms, such as support vector
machines, random forest, and artificial neural networks, have been used in medical
diagnosis (Wang et al., 2023; Hanis etal., 2022, Shi etal., 2022).

This study is particularly relevant to Lagos State, Nigeria, a rapidly developing and densely
populated city with over 21 million residents, although its findings can be applied to other
locations. The rapid industrialisation and urbanisation in Lagos have led to severe air
pollution, primarily driven by transportation emissions, increasing the risk of respiratory
illnesses such as asthma and chronic bronchitis (Adedokun and Owode, 2019; Oluwole et
al., 2016). Given the high population density and pollution levels, this study focuses on the
application of machine learning algorithms to address the health risks associated with
elevated COHb concentrations. To the best of our knowledge, in addition to the knowledge
dearth of studies on COHb from developing countries like Nigeria, there has been no
previous attempt to employ machine learning for modelling COHb levels in this specific
context, despite the existence of various experimental and mathematical models for gas
pollution and its impact on humans (Abbey et al., 2022; Adedokun and Owode, 2019;
Oluwatusin etal., 2019; Oluwole et al., 2016; Oghenejoboh and Adiotomre, 2012).

2.0 MATERIALS AND METHODS

2.1 Data collection
Stringent guidelines govern the handling of blood samples containing carboxyhaemoglobin
to ensure the accurate detection of low concentrations of pollutants in the specimens.
Health Research Ethics Committee of the Lagos State University Teaching Hospital with the
approval number HREC: 19/12/2008a and Lagos State Ministry of Health Research Ethics
Committee.

A total of 516 consented volunteers (Table 1) from all 20 local government areas of Lagos
State (Fig 1) were recruited for this study. Various instruments, such as a weighing machine,
metre rule, manometer, glucometer, and other necessary materials, were used for data
collection during visits to the different sites. This data collection period began on 6th June
2016 and concluded on 19th August 2016. Each participant provided 8ml of blood for COHb
lab analysis. To preserve the blood specimens, fluoride oxalate was used in securely
stoppered tubes. These tubes were filled and stored in the dark in a deep freezer
refrigerator, maintaining a temperature of 4°C. It's important to note that in the presence
of oxygen at atmospheric partial pressure, these samples may undergo exchange with the
carbon monoxide present in the samples, a process accelerated by exposure to light and
heat.
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Figure 1: Location areas of the study population.
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Table 1: Number of blood samples collected from consented volunteered from each LGA

S/no  LGA No of participants
1 Agege 20
2 Ajeromi/Ifelogun 16
3 Alimosho 30
4 Amuwo Odofin 16
5 Apapa 24
6 Badagry 22
7 Epe 18
8 Eti Osa 28
9 Ibeju Lekki 21
10 Ifako/ljaye 20
11 Ikeja 29
12 Ikorodu 25
13 Kosofe 21
14 Lagos Island 32
15 Lagos Mainland 21
16 Mushin 18
17  Ojo 20
18 Oshodi/lsolo 20
19 Shomolu 21
20 Surulere 20

2.2 Machine Learning Algorithms and Error Assessment

In this study, the ML models were implemented through a four-step pipeline that included imputation,
data normalisation, feature selection, and classification. Python, utilising essential libraries such as Scikit-
learn, TensorFlow, Pandas, NumPy, and specific packages like extreme gradient boost and cat-boost,
served as the programming language. The data collected during the field experiment encompassed
information such as sex, age, height, weight, waist circumference, body mass index (BMl), glucose level,
systolic blood pressure (SYS), and diastolic blood pressure (DIA). Additional variables were derived
through mathematical manipulations of the initial data to enhance the stability and performance of
machine learning algorithms. These included SYS/DIA, DIA/SYS, weight/age, and height/age ratios. In
total, thirteen factors were used as predictors in classifying the measured COHb concentration, with
missing values imputed using the median of the observations. The classification groups were composed
of four different ranges of COHb percentages in the blood samples. The first group included cases with
less than 1% COHb, the second group consisted of individuals with COHb levels between 1% and 1.8%,
the third group covered values greater than 1.8% and up to 3.5%, while the final group included those
with COHb percentages exceeding 3.5%.

A comprehensive evaluation of various classification algorithms was conducted, including random forest
(RF), artificial neural network (ANN), naive bayes, logistic regression, support vector machines (SVM)
(using kernels like linear, polynomial (poly), radial basis function (RBF), and sigmoid), k-nearest neighbours
(KNN), extreme gradient boost (XGB), light gradient boost machine (LGBM), cat-boost, and bagging
classifier. The selection of these algorithms was based on their established state-of-the-art performance
in data analysis and their interpretability when employing feature-attribution techniques. Hyper-
parameters were transformed using the Yeo-Johnson transformation to make variables more normally
distributed, reducing skew in the raw data. Additionally, a data scaling approach normalised the limits
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between -1 and 1, in addition to the power transformation procedure in Scikit-learn. Further details on
the training techniques for the ML algorithms can be found in Table 2.

Table 2: Training modalities of the ML algorithms in Python, where except for the mentioned features,
the rest of the systems were left at default.

S/no ML Model Training Techniques
1 logistic regression {penalty = 12, maximum iteration = 100}
2 mnlogit_mod {maximum iteration = 1000}
3 SVM (linear, poly, {probability = True, random state = 0}
RBF, sigmoid)
4 naive bayes {Guassian_NB}
5 KNN {neighbours =3}
6 ANN {various hidden layers (varied between 3 and 13),

number of neurons (varied between 1 and 10), batch
sizes = 265, maximum iteration = 1000, validation
fraction = 0.02, random state= 0}

7 decision trees {random state = 0}

8 RF {n-estimators (varied between 1 and 10), random
state = 0}

9 bragging classifier {base estimator = rfc2, iteration = 15, max samples =
0.75, max features =0.75, random states = 0}

10 XBG {random state = 0}

11 LGBM {random state = 0}

12 cat-boost {verbose =0, random state = 0}

A meticulous two-step process was adopted for model selection, training, and evaluation to mitigate the
risk of overfitting. Initially, a stratified approach was employed to partition the datasetinto a training set
(72%) and a hold-out test set (28%). The entire training set was then utilised for model training and
calibration, while the hold-out test set was used to assess the calibrated models. To evaluate the
generalisability of models to new settings with limited data, an internal-external validation procedure was
implemented using a bootstrap-based approach. This methodology facilitated the estimation of model
performance when exposed to new data in different settings, offering valuable insights into their
robustness and applicability beyond the original dataset.

Several metrics like accuracy, F1, precision, and confusion matrix were used to evaluate the performance
of the machine learning models. A confusion matrix is a table that is often used to describe the
performance of a classification model on a set of test data for which the true values are known. Accuracy
measures how often the classifier correctly predicts. It is the ratio of the number of correct predictions
and the total number of predictions. It is expressed as:

Accuracy = (TP+TN) /(TP +TN + FP + FN)

where TP is the true-positive, TN is the true-negative, FP is the false-positive, and FN is the false-negative.
Precision explains how many of the correctly predicted cases actually turned out to be positive. It is
defined as the number of true positives divided by the number of predicted positives. Its expression is:
Precision =TP / (TP + FP)

Recall or sensitivity explains how many of the actual positive cases we were able to predict correctly with
our model. It is defined as the number of true positives divided by the total number of actual positives.
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Recall=TP/ (TP +FN)

The F1 score is the harmonic mean of precision and recall. It is maximum when precision is equal to recall.
F1 = 2 x (Precision x Recall) / (Precision + Recall)

Finally, the ROC-AUC, which means Receiver Operator Characteristic (ROC) - Area Under the Curve (AUC).
While ROC is a probability curve that plots the TPR (true positive rate) against the FPR (false positive rate)
atvarious threshold values and separates the signal from the noise, AUC is the measure of the ability of a
classifier to distinguish between classes.

3.0 RESULTS AND DISCUSSION

3.1 Predictors Correlations
Following the coded procedure, the 516 individuals from the field experiment were automatically split
into two sets: the training set, which included 254 individuals in the first group, 64 in the second group,
55 in the third group, and 3 in the fourth group; and the testing set, comprising 94, 24, 21, and 1 individual
in the respective four groups. Although the extent by which a factor predicts depends on the given ML
algorithm, COHb specifically exhibited minimal dependence on gender, waist circumference, and height
but demonstrated a stronger correlation with glucose levels, DIA/SYS, and BMI. However, other factors
that could significantlyimpact COHb prediction included weight, age, systolic blood pressure, and diastolic
blood pressure (Fig 2). Furthermore, the derived variables exerted a more pronounced influence than
individual predictors. For instance, while height and age had a limited impact on COHb, their combined
effect contributed to a more accurate prediction.
The correlation coefficients between COHb and the predictors are consistently weak, with values
generally falling below 10%, whether positive or negative (Fig 3). Furthermore, COHb displays a positive
relationship with only four out of the thirteen variables, which include height, waist, SYS/DIA, and
height/age. In order of importance, the five factors out of the lot that indirectly impact on COHb include
glucose level, BMI, weight, sex, and DIA. The positive correlation values range from 0.0019 to 0.04,
whereas the negative correlations range from -0.0045 to -0.089. Notably, the comparison between Figs 2
and 3 suggests that machine learning algorithms appear to rely more on negatively correlated predictors
than the positive ones in most cases. For instance, a typical ML model exhibits a higher dependence on
glucose, DIA/SYS, BMI, DIA, weight, and SYS, which have negative relationship with COHb compared to
height, waist, SYS/DIA, and height/age.
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Figure 2: A typical impact of the predictors on the outcome of COHb from random forest
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Figure 3: Correlation coefficient values between all the variables used in this study.

3.2 Retained ML Models

Since this is a classification problem designed to function as a diagnostic tool rather than animaging task,
ML algorithms achieving 100% in error functions like accuracy and precision during the training phase
were considered prone to overfitting and subsequently excluded. The affected algorithms include decision
trees, XBG, LGBM, and cat-boost. However, the optimal configurations for RF and the ANN were identified
and retained. The random forest performed best with 10 n-estimators, while the artificial neural network,
which, aside from the input and output layers, had seven hidden layers, each containing six neurons,
demonstrated superior performance. Additionally, as the hold-out test section indicates generalisation
capacity, models with low performance, scoring below a cutoff of 65% accuracy during this phase, were
also excluded, although a score of 70% and above is deemed desirable.

At times, the error terms exhibited disparities among themselves by displaying different trends, especially
when disregarding the overfitting models that were dropped, in which all error terms were consistently
100%. So, because the testing phase reflects responses to unfamiliar circumstances and generalisation
capabilities, greater emphasis is placed on it than on the training phase. In the testing phase (Table 3),
accuracy scores range between 70.00% and 65.00%, F1 scores fall within 63.00% and 53.13%, ROC-AUC
values range between 67.48% and 49.91%, while precision varies between 63.58% and 44.93%.
Throughout this phase, the ANN consistently achieves the top results in all error terms. However, while
the log regression ML algorithm maintains the lowest grades in F1 and precision, it pairs with SVM-poly in
having the lowest score in accuracy, while SVM-linear has the lowest value in ROC-AUC. Nevertheless,
during the training phase (Table 4), accuracy ranges between 97.87% and 67.55%, F1 values range from
97.84% to 54.17%, ROC-AUC varies between 99.92% and 47.35%, and precision falls between 97.91% and
45.63%. While all the highest values pertain to random forest, all the lowest values do not necessarily
belong to a single ML model.
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Table 3: Error terms for the retained ML models at the testing phase

S/no  Model Accuracy F1 (%) ROC-AUC (%)  Precision (%)
(%)
1 Log regression 65.00 53.13 57.59 44,93
2 SVM-linear 67.14 53.94 49.91 45.08
3 SVM-poly 65.00 54.63 59.86 48.78
4 SVM-RBF 67.14 53.94 63.43 45.08
5 ANN 70.00 63.00 67.48 63.58
6 random forest 66.43 61.39 67.07 60.25
7 bragging classifier  65.71 57.77 61.00 60.92

Table 4: Error terms for the retained ML models at the training phase

S/no  Model Accuracy  F1 (%) ROC-AUC (%)  Precision (%)
(%)
1 log regression 68.62 57.25 64.49 74.92
2 SVM-linear 67.55 54.47 47.35 45.63
3 SVM-poly 73.94 67.17 78.62 80.36
4 SVM-RBF 67.55 54.47 81.03 45.63
5 ANN 74.20 70.01 81.45 72.03
6 random forest 97.87 97.84 99.92 97.91
7 bragging classifier ~ 88.03 87.10 99.38 88.57

Due to the skewness of the data in this study, where a greater number of individuals can be found in a
given group compared to the others, a high score in error terms can be misleading. The confusion matrix
(Fig 4) can help reveal the extent to which the groups with few individuals were predicted. Fig 4(a)
presents the ideal confusion matrix for the problem at hand, and the comparison of the perfect situation
with the rest reveals the inadequacy of the ML models. The worst scenario arose from models that failed
to classify individuals into any other groups except placing everyone in the 1st class. The affected ML
algorithms were the respective SVM with linear and RBF kernels (Figs 4(b) and 4(c)). The apt generalisation
of the ANN model with the hold-out test set regarding the error terms is also evident in the confusion
matrix. Given that members of the first class are 94 in number, the ANN (Fig 4(g)) and log regression (Fig
4(e)) algorithms predicted the closest to 94, identifying 91 persons. In the second group where 24 are
expected, the closest to that is the random forest, followed by both ANN and bragging classifier (Fig 4(h))
at 5 and 2 persons, respectively. In the third group where 21 individuals belong, ANN (Fig 4(g)), random
forest (Fig 4(d)), bragging classifier (Fig 4(h)), and SVM-poly (Fig 4(f)) placed 5, 3, 2, and 1 init, respectively.
However, in the last group with a lone individual, no ML model predicted it correctly.
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Figure 4(a-h): Multiple confusion matrixes for COHb classifications for individuals in Lagos State, Nigeria.

3.3 Discussion
Clearly, factors demonstrating a negative relationship with COHb respond appropriately to machine
learning modelling. Glucose, which exhibits the highest negative correlation with COHb, represents the
natural sugar content or a type of carbohydrate found in foods. Cells derive energy from glucose for
survival. During food oxidation under various reaction steps, oxygen reacts with glucose to form carbon
dioxide, water, and energy for the eventual production of ATP, as illustrated in Equation 1:
CcHi,04 +60, =6C0, + 6H,0 + Energy (1)
As indicated in Equation 1, a relatively low glucose level suggests sufficient oxygen content in the body,
supporting metabolism that releases carbon dioxide during respiration. In addition to tissue oxygenation,
02 eliminates CO from haemoglobin based on their partial pressures, lifespan stages, or exposure time,
concentrations of other gases such as nitric oxide, and other factors including body temperature and
enzyme or protein actions (Crecelius et al., 2015; Ryter etal., 2006; Jones and Kennedy, 1982; Rodkey et
al., 1974). Given the role of glucose in cell metabolism and its implications for oxygen availability in blood
cells, it is unsurprising that glucose significantly influences the prediction of COHb. However, while
SYS/DIA and DIA/SYS share a 15% relationship with glucose (Fig 3), the latter, with a notably negative
correlation, has a more pronounced effecton the prediction of COHb compared to the former, as depicted
in Fig 2. Importantly, while SYS/DIA holds a correlation coefficient value of 4% with COHb, DIA/SYS, which
predicts the molecule more accurately, has a correlation coefficient value of -3.5%. Moreover, the
relatively significant impact of BMI or weight on COHb prediction may be attributed to a larger body's
increased capacity to retain substantial amounts of food, fat, or glucose. Consequently, the inverse
correlation between Oz and CO allows machine learning algorithms to easily recognise glucose, BMI, and
weight as robust predictors of COHb. Notably, these three factors —glucose level, BMI, and weight—
exhibit the highest negative correlation coefficient values with COHb (Fig 3). Inevitably, maintaining a
healthy diet or administering synthesised glucose to patients can positively influence the symptoms of CO
poisoning.
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Except for gender, factors that correlate relatively well with COHb, whether positively or particularly
otherwise, are likely to have an impactful tendency to predict the molecule (Figs 2 and 3). Gender, as an
exception to this trend, is likely due to its lack of variation, notwithstanding its comparatively high
negative correlation with COHb. Although gender has little impact on diagnosing COHb concentration in
this study, it could be essentially impactful under the same height and age with mathematical modelling
(Oluwatosin et al., 2019).

This study has several limitations, primarily stemming from its narrow scope. Although the study targeted
individuals at risk of CO poisoning, such as roadside traders and open-market traders exposed to highly
polluted airin Lagos, the participants were volunteers from the community who were neither hospitalised
due to CO poisoning nor systematically exposed to CO gas. As a result, the results may not fully capture
the experiences of all individuals who are unwell or exhibiting symptoms of elevated COHb concentration,
despite some individuals being found to have elevated levels of CO poison in their bodies. Furthermore,
the absence of laboratory animal testing limits the researchers' ability to comprehensively explore various
possibilities, such as evaluating the associated risks of CO poisoning with different exposure times.

Given that a highconcentration of CO significantlyimpacts vital organs like the heart and brain, individuals
with pre-existing medical conditions require special attention. Furthermore, apart from factors like
smoking habits, workplace incidents, and fire accidents, elevated CO exposure can occur during activities
such as cooking with kerosene, wood, coal, charcoal, and cooking gas, as well as travelling in vehicles
running on fossil fuels. Itis noteworthy that the effects of CO poisoning tend to diminish after a few days
with proper oxygen intake.

Itis possible that if models like decision trees, XBG, LGBM, and cat-boost were expansively trained (Wang
et al., 2023), they would have been suitable for this exercise. This is because RF with 2 n-estimators
(though not shown here) fell into such a category, achieving 100% accuracy, F1, ROC-AUC, and precision
scores during the training phase. The RF model used in the study performed optimally during the training
section yet could not sustain such performance during the testing phase, indicating some degree of
overfitting. Future studies could evaluate the impacts of tuning system parameters and consider
hybridising either ML with mathematical models or optimisers like genetic algorithm and particle swamp
optimisation to ascertainif there is a better approach (Obot, 2024).

Given the escalating adoption of machine learning algorithms in the medical sciences, a study of this
nature holds invaluable potential for applications in the clinical treatment of CO-related issues, such as
burn treatment, sleeping disorders, mental health problems, and respiratory diseases. Notably, there is a
growing trend in the development of wearables —medical devices that integrate artificial intelligence
techniques with sensors for non-invasive diagnosis. The significance of wearables is particularly
pronounced in remote regions with limited access to advanced clinical examination facilities.
Furthermore, the inherent unpredictability in the recurrence of medical conditions, coupled with
constraints such as limited hospital facilities, bed space, and manpower, as well as frequent changes in
weather, lifestyles, and dietary patterns, underscores the necessity for physicians to remotely monitor
their patients. Wearables or oximeters equipped with alert systems can play a crucial role in providing
timely alarms whenever necessary (Lee et al., 2021; Adjiski etal., 2019; Wu, 2019).

Those with a relatively high percentage of COHb in their blood samples are at risk of CO poisoning and its
effects, but they fall into the 3rd and 4th groups with relatively few numbers. As such, ML models are
somewhat incapacitated in handling the issue at hand because enough data is required for them to learn.
Unfortunately, only one person falls into the fourth class (with a percentage of COHb in the blood sample
higher than 3.5) in the hold-out test set, and the only ML model that could reveal that the individual does
not belong to the first group is the ANN (Fig 4(g)). To err on the side of safety, precautionary measures or
treatment may be necessary when a subject does not fall into the first group when using the
recommended ANN scheme.
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4.0 CONCLUSION

To address the constraints associated with time wastage, high costs, painful body piercing, and
inaccuracies linked to clinical and mathematical methods for determining carboxyhaemoglobin, this study
employed a comprehensive use of machine learning algorithms to classify the complex levels in the
densely populated Lagos State of Nigeria for a possible development of wearable. Thirteen inputs, namely
sex, age, height, waist circumference, BMI, glucose, diastolic BP (DIA), systolic BP (SYS), DIA/SYS, SYS/DIA,
weight/age, and height/age, were utilisedto classifyfour levels of COHb. The machine learning algorithms
included artificial neural networks (with various hidden layers), support vector machines (employing
different kernels such as linear, radial basis function, sigmoid, and poly), k-nearest neighbour, decision
trees, random forest (with varied n-estimators), naive bayes, and well-known classifiers like bagging, XGB,
LGBM, and cat-boost. Using a 72:28 ratio to partition the data into training and testing groups, statistical
measures for evaluating the ML models included accuracy, confusion matrix, precision, and F1. Models
with 100% accuracy during the training phase and those scoring below 65% during the testing phase were
excluded. The conclusions in this study are as follow:

I. Machine learning (ML) demonstrates the ability to identify factors strongly linked to oxygen,
particularly in the context of oxidation, such as glucose and BMI, when modelling COHb.
Additionally, this capability could be extended to capture the inherent relationship between the
qguantity of carbon monoxide and oxygen in human blood. Therefore, administration of glucose
may be helpful in the management of CO poisoning.

li. Negatively correlated variables wield a more pronounced impact than positively related factors in
ML-based COHb modelling.

lil. In instances where a predictor lacks adequate variation, its contribution to ML modelling is
minimal, regardless of the level of negative correlation with COHb.

Iv. Frequently, the influence of a variable derived through the mathematical manipulation of two
variables surpasses that of each individual variable.
V. An artificial neural network structure with 7 hidden layers, each comprising 6 neurons,

demonstrated optimal performance during testing and is consequently recommended for COHb analysis
in the Python environment for the city of Lagos, Nigeria. This model stood out with a 70% accuracy score
during testing and yielded the most favourable confusion matrix output.
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