
Journal of Engineering Research, Volume 29, Number 4, December 2024 

31 

 

Physics-Informed Neural Networks for the Prediction of Critical 
Sand Transport Velocity in Oil and Gas Pipelines 

 

A. B. Ehinmowo1*, B. Ofum2, J.O. Olaide3 
Department of Petroleum and Gas Engineering, University of Lagos, Lagos, Nigeria 

* Email: aehinmowo@unilag.edu.ng 
 

Abstract 
Poorly consolidated reservoir formations make the generation of sand alongside hydrocarbons unavoidable. The 
condition of petroleum pipelines can be seriously compromised by the rapid generation of sand or by sand 
deposition at low velocities, leading to degradation and reduced capacity. Consequently, it is essential to 
investigate the minimum transport velocity needed to prevent pipeline sand accumulation. This study employed 
two predictive modelling tools, a physics-informed neural network (PINN) and a multilayer perceptron (MLP) 
regressor, to estimate the minimum transport conditions in a solid-liquid-gas pipeline. The models were 
developed using 182 experimental data sets, which included variables such as superficial velocity, pipe diameter, 
particle diameter, sand density, sand concentration, liquid density, viscosity, pipe angle of inclination, and critical 
velocity parameters. The results indicated that the physics-informed neural network outperformed the MLP 
regressor, achieving an R² coefficient of 0.9999 and a root mean square error (RMSE) of 0.00465. In comparison, 
the MLP regressor attained an R² coefficient of 0.9992 and an RMSE of 0.0295. Both models were evaluated 
alongside existing empirical and data-driven models and demonstrated superior performance in predicting 
minimum transport velocity, with the PINN yielding the best results. A sensitivity analysis revealed that the 
superficial velocity is the most influential parameter for predicting minimum transport velocity, followed by pipe 
diameter, sand concentration, and pipe angle. This research highlights the potential of effectively integrating 
physical laws into the machine learning training process to estimate minimum transport velocity in multiphase 
pipelines better 
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1.0 INTRODUCTION   

race amounts of solids such as sand and debris, sometimes get transported with fluids 
from a reservoir due to fractures in loosely packed formations and poorly consolidated 

reservoirs. This flow of sand and oil through pipelines creates significant flow assurance 
challenge. Sand deposition may block pipelines and disrupt oil and gas transport. 
Furthermore, sand particles may be responsible for the pipe abrasive wear, erosion, and even 
corrosion of the pipe surface, either by mechanical action or microbial activity under sand 
layers. All these effects weaken pipeline integrity and reduce the efficiency of production and 
transport. There is the need to ensure uninterrupted flow of hydrocarbons from the reservoir 
to the processing facilities. 
 
Sand production happens when formation stress surpasses formation strength and leads to 
rock failure, which occurs due to geological movements, ground stress, pressure-induced, and 
flow resistance force. Sand particle production can consist of load-bearing solids and 
formation fines (Mahmud et al., 2020). If the production of sand is likely to occur, sand 
penetration into the system can be avoided by the use of some methodologies, including the 
subsurface sand rejection mechanism such as gravel packs and screens; however, these 
methods may cause a major decline in productivity (Leporini et al., 2019). Sand particles need 
to be transported to prevent settling in pipelines when transporting hydrocarbons.  Thus, the 
flow rate must be kept above the minimum transport conditions (MTC) or minimum 
transport velocity (MTV). This ensures sand particles keep moving along the pipe. Experts use 
different ways to estimate this velocity, including mechanistic models, Computational Fluid 

T 



JER Vol. 29, No. 4            Ehinmowo et al.              pp 31-40 

 

 

32 

 

Dynamics (CFD) models, and experimental studies. Several studies have focused on 
developing models to estimate minimum transport velocity. Al-Mutahar (2006) proposed a 
mathematical model for the critical transport velocity based on the equilibrium condition 
under which the net force equals zero, using the two irregular flow theories of Oroskar and 
Turian (1980) and Davies (1987). In developing this mathematical model, Al-Mutahar 
employed a three steps approach. The model first calculates the turbulent velocity changes 
that are necessary to keep solids in suspension, then estimates the actual turbulent changes 
caused by the moving fluid and finally determines the critical transport velocity. This model 
assumes that when the required and produced turbulent changes are equal, the solids remain 
in suspension. 
 
Tebowei et al. (2018) presented a 3D CFD model that simulated fluid behaviour in the 
Eulerian-Eulerian process with the dynamic principle of particle flux to investigate the 
transportation of sand in turbulent pipelines and flow lines. The model considered inter-
particle collision and friction forces to capture various regimes of particle movement. Results 
indicated that the inclined pipe affected the minimum transport velocity and properties of 
sand. The model considered that the use of correlations (empirical or semi-empirical) to 
determine the minimum sand transport velocity from inclined pipes, including horizontal 
pipes, could be unreliable for the inclined sections. Unlike the case of horizontal pipes, the V-
inclined curve needed a far larger threshold velocity to keep the sand in suspension within 
the liquid. 
 
Archibong-Eso et al. (2020) studied sand transport in horizontal and inclined pipes under 
Minimum Transport Condition (MTC) requirements, using experiments with pipes of 0.0127 
m diameter and sand concentrations from 0.1% to 10%. The results showed that increasing 
mixture velocity or sand concentration raised both MTC and pressure gradients, stabilizing 
the pressure gradient at higher sand concentrations near MTC. 
 
Several studies have explored data-driven approaches, such as machine learning, to model 
minimum transport conditions (MTC). Bhattacharya et al. (2007) simulated sand transport 
using experimental data, applying model trees and artificial neural networks (ANNs). Salam 
et al. (2018) used response surface methodology to create a regression model for predicting 
MTC based on a double-factor synergy, which they validated and refined. An improved 
approach by Sarraf Shirazi and Frigaard (2021) combined ANN and support vector machines 
(SVM) to predict the minimum velocity for transitioning from laminar to turbulent slurry flow, 
also calculating frictional pressure drops in pipes. Ehinmowo et al. (2021) assessed ANN, 
adaptive neuro-fuzzy inference system (ANFIS), and response surface methodology models 
for predicting MTC in multiphase pipelines, finding them superior to earlier methods. Further 
improvements by Ehinmowo et al. (2022) involved applying the firefly optimization algorithm 
to enhance a model for predicting the minimum velocity needed to keep sand particles 
suspended in multiphase flow, achieving over 98% accuracy, a 17% improvement over the 
benchmark. Stachurska et al. (2022) introduced new machine learning techniques to predict 
the velocity of loose tidal grains over dunes using particle visual velocity measurements. They 
applied the Student Psychology-based Optimization (SPBO) algorithm, which included linear, 
nonlinear, and exponential regression methods as the training models, and the Classification 
and Regression Tree (CART) and ANFIS. 
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Most studies have identified viscosity, size, density, and velocity as the factors affecting MTC 
for sands and focused on horizontal or nearly horizontal flows, with very few on vertical, 
curved, or inclined ones.  Machine learning opens up new avenues to address some of these 
challenges. Previous machine learning implementations for MTC have outperformed the 
traditional approaches many times. However, while training, most models hardly consider 
physical laws that may enhance the precision of a model, its generalization capability, and 
adherence to MTC principles. This gap necessitates this study, which developed a Physics 
Informed Neural Network and a Multilayer Perceptron Regressor using experimentally 
obtained data in modeling minimum transport velocity. 

2.0 MATERIALS AND METHOD 

This study aims to predict the minimum transport velocity in multiphase flow systems based 
on viscosity, fluid and gas density, pipeline diameter, inclination angle, sand concentration, 
and sand particle size. Two nonlinear machine learning methods, the physics-informed neural 
networks (PINN) and a multilayer perceptron (MLP) regressor, were employed. The minimum 
transport velocity is the speed needed to keep sand in continuous motion, making this a 
regression problem since it involves predicting a continuous variable. 

2.1 Machine Learning and Algorithm used 

Physics Informed Neural Networks (PINNs): Physics-informed neural networks are a class of 
neural networks that solve problems in which data and physical laws are essential. PINNs 
incorporate known physical equations into their training process, unlike regular neural 
networks. A typical PINN network is shown in Figure 1. 
 

 
 

Figure 1: Physics informed neural network diagram (Li et al., 2024) 

 
The Turian et al. (1987) equation was implemented in this study to incorporate a physics-
based model for the critical velocity in pipelines, which it uses as a guiding principle for 
training the neural network. It factors in pipe diameter, particle size, sand concentration, and 
fluid viscosity to estimate transport velocity. The Turian equation is incorporated into the loss 
function of the PINN modeling process. This addition helps the model learn the patterns in 
the data and the principles that govern the Turian et al. (1987) equation as shown in equation 
1. 

  (1) 
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Where Vc is the critical transport velocity,  is liquid viscosity, Cv is sand concentration, d is 

particle diameter, g is gravitational acceleration, D is pipe diameter,  is liquid density, and s 
is the ratio of particle density to liquid density 

 
Multilayer Perceptron (MLP) Regressor: The major components of a multilayer perceptron 
include an input layer, several hidden layers, and an output layer as shown in Figure 2. 
Neurons form layers and are completely connected between layers, meaning that every 
neuron in a particular layer is linked to every neuron in the layer directly past it. An activation 
function is assigned to all neurons except those from the input layer. This activation function 
decides the neuron output based on the input provided. MLP is trained using a 
backpropagation method of adjustment in the neuron connections so that the training error 
is minimized and thus increases the accuracy. 
 

 
 

Figure 2: MLP Regressor Schematics (Afan et al., 2021) 

2.2 Model Evaluation Metrics 

For this study, mean absolute error (MAE), mean squared error (MSE), root mean squared 
error (RMSE), mean absolute percentage error (MAPE), and regression coefficient (R2) were 
used to evaluate the performance of the models developed. 
 

1. Coefficient of Determination or Performance (R-Squared) 

𝑅2 = 1 −
∑ ( 𝑉𝑀𝑇𝐶,   𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑉𝑀𝑇𝐶,   𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 )2𝑛

𝑖=1

∑ ( 𝑉𝑀𝑇𝐶,   𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑉𝑀𝑇𝐶,   𝑚𝑒𝑎𝑛 )2𝑛
𝑖=1

                   (2) 

Where, 
𝑉𝑀𝑇𝐶,   𝑎𝑐𝑡𝑢𝑎𝑙  = experiment minimum transport velocity values 
𝑉𝑀𝑇𝐶,   𝑝𝑟𝑒𝑑𝑖𝑐𝑡  = predicted minimum transport velocity values 

n = number of records 
𝑉𝑀𝑇𝐶,   𝑚𝑒𝑎𝑛 = mean of minimum transport velocity values 

 
2. Root Mean Squared Error (RMSE) 

    𝑅𝑀𝑆𝐸 = √
∑ ( 𝑉𝑀𝑇𝐶,   𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑉𝑀𝑇𝐶,   𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 )2𝑛

𝑖=1

𝑛
                      (3) 

 
3. Mean Squared Error (MSE) 

𝑀𝑆𝐸 =  
∑ ( 𝑉𝑀𝑇𝐶,   𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑉𝑀𝑇𝐶,   𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 )2𝑛

𝑖=1

𝑛
                            (4) 
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4. Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =  
∑ |  𝑉𝑀𝑇𝐶,   𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑉𝑀𝑇𝐶,   𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 |2𝑛

𝑖=1

𝑛
                        (5) 

 
5. Mean Absolute Percentage Error (MAPE) 

𝑀𝐴𝑃𝐸 = |
 𝑉𝑀𝑇𝐶,   𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑉𝑀𝑇𝐶,   𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑉𝑀𝑇𝐶,   𝑎𝑐𝑡𝑢𝑎𝑙
| ∗ 100                    (6) 

 

2.3 Data Collection and Preparation 

This study uses data from Archibong-Eso et al. (2020) experimental work. The experiments 
were conducted at the Oil and Gas Engineering Centre of Cranfield University using a 0.0254-
meter diameter pipe placed horizontally and at a 30-degree incline. Table 1 summarizes the 
data. 
 
Table 1: Summary of statistics of the experimental data used in this study 

Features Minimum Maximum Mean Median Standard Deviation 

Superficial Velocity (ms-1) 0.07 8.37 2.12 1.52 1.81 

Pipe Diameter (m) 0.009 0.70 0.100 0.100 0.091 

Particle Diameter (mm) 0.10 3.70 0.37 0.36 0.37 

Sand Density (kgm-3) 2650 2650 2650 2650 0 

Sand  Concentration (vol %) 0.002 60.00 12.07 10.00 14.27 

Liquid Density (kgm-3) 850.0 1000.0 997.9 1000.0 16.6 

Liquid Viscosity (mPa·s) 1.00 17.00 1.15 1.00 1.37 

Pipe Angle (ø) -25.00 30.00 4.54 0.00 11.39 

Critical Velocity (ms-1) 0.07 4.40 1.64 1.44 1.01 

 
One hundred eighty-two (182) data points were acquired for superficial velocity, pipe 
diameter, particle size, sand concentration, liquid density and viscosity, and pipe angle. These 
experiments were carried out using video recordings and pressure sensors to track sand 
transport through the liquid stream, focusing on minimum transport conditions. Before 
developing the model, the data was cleaned and scaled. It was then split into three sets: 70% 
for training, 15% for validation, and 15% for testing. 
 

2.4 MODEL ARCHITECTURE FOR TRAINING 

The PINN has a structure of 8-72-72-1. This means it has 8 input nodes (one for each feature), 
two hidden layers with 72 nodes each using the tanh activation function, and 1 output node 
for predicting critical velocity. It was trained with a learning rate of 0.001 for 500 epochs and 
includes physics-based rules for better understanding. The MLP Regressor follows an                  
8-50-50-1 architecture. It starts with 8 input nodes, has two hidden layers with 50 nodes each 
using the ReLU activation function, and 1 output node for predicting critical velocity. This 
model is trained with a learning rate of 0.001 for 600 epochs. Both models use deep learning 
to find complex patterns in the data, with the PINN adding some physics rules to make 
predictions more reliable. 
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3.0 RESULTS AND DISCUSSION 

A model evaluation study was done after modeling to test the performance of PINN and MLP 
models in the test or future scenarios. Table 2 presents the performance of each model 
evaluated in terms of MAE, MSE, RMSE, MAPE, and R² metrics. The PINN had superior 
prediction in comparison with the MLP regressor. For PINN and MLP models, R² and RMSE 
values were equal to 0.9999 and 0.9992 and 0.0047 and 0.03, respectively. 
 
Table 2: Performance evaluation of PINN and MLP Regressor  

R² MSE RMSE MAE MAPE (%) 

PINN Model 0.99998 0.00002 0.00469 0.00367 0.24904 

MLP Model 0.99920 0.00087 0.02950 0.01974 1.54660 

 
3.1 Model Evaluation Visualization 
Figure 3(a) and 3(b) show prediction error plots for the PINN and MLP models respectively. A 
prediction error plot is a plot of the expected values of MTC from the dataset against the MTC 
values predicted by the model. The plot helps determine how well the predictions correspond 
to the actual values. 
 

 
Figure 3(a): PINN model prediction error plot       Figure 3(b): MLP model prediction error plot  

 
3.2 Comparative Analysis with existing MTC Models 
Table 3 compares the developed model’s results with those of other published models. The 
comparison shows that the PINN and MLP regressor models performed better than the other 
literature models using the R2, MSE, RMSE, and MAPE metrics. 
 
Figure 4 shows the visualization of the sensitivity analysis conducted to evaluate how 
different factors affect the minimum transport velocity of sand using the PINN model. The 
results showed that superficial velocity has a strong positive correlation with the sand's 
critical transport velocity. As superficial velocity increases, the critical velocity of the fluid rises 
as well. This is because higher fluid velocities would exert more drag on sand particles, thus 
providing the required energy to keep them suspended and not deposited on pipeline walls 
(Dabirian et al., 2016; Yao et al., 2022). The pipe diameter also has a positive relationship with 
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the sand's critical transport velocity. When the pipe gets bigger, you need a higher critical 
velocity to keep sand particles floating in the fluid. This happens because, with the same flow 
rate fluid moves slower in bigger pipes due to more area inside. To prevent sand from settling, 
the critical velocity must be higher to ensure suspension in these larger pipes (Yao et al., 
2023). Although particle diameter shows a slight positive trend, its effect on critical velocity 
is relatively weak. 
 
Table 3: Numerical comparison between the developed models and published models 

Correlation R2 MSE RMSE MAPE (%) 

Turian et al. (1987) 0.6932 0.3315 0.5758 27.4 

Danielson (2007) 0.8003 0.17448 0.4170 60.3 

Yan (2010) 0.803 0.07129 0.2670 26.2 

Fajemidupe et al. (2019) 0.8149 0.00090 0.0300 24.0 

Ehinmowo et al (2021) 0.9994 0.00208 0.0456 2.15 

Ehinmowo et al (2022) 0.9845 4.99 x 10-17 7.07 x 10-9 22.97 

PINN Model 0.99998 0.00002 0.0047 0.2 

MLP Model 0.99920 0.00087 0.0295 1.5 

 

 
Figure 4: Sensitivity analysis for minimum transport condition prediction 

 
The relationship between sand concentration and critical velocity is non-linear, with 
noticeable changes as concentration increases. An increase in sand concentration results in a 
greater degree of particle-particle interactions, which in turn can cause an increase in the 
effective viscosity of the fluid, thus a greater critical velocity is to be used in order to prevent 
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deposition (Zhang et al., 2022). The pipe’s inclination angle also has a non-linear effect on 
critical velocity. For upward-inclined pipes, the flow has to work against gravity; hence, higher 
velocities are required in order to prevent sand from settling. In contrast, gravitational effects 
become smaller for horizontal or downward-sloping pipes, and thus a lower critical velocity 
is needed to keep particles in suspension (Vlasak et al., 2019). However, beyond a certain 
angle, the effect of the pipe's inclination angle becomes negligible, showing diminished 
effects of gravity. 
 
This analysis underscores that superficial velocity is the most influential parameter for 
minimum transport velocity modelling, followed by pipe diameter, sand concentration, and 
pipe angle. The particle diameter has the least effect. The intricate interdependence of these 
parameters, which must all be considered to fully grasp the conditions of minimum sand 
transport, adds a layer of complexity to the problem. 

4. CONCLUSION   

Physics-informed neural networks and multilayer perceptron regressors were developed in 
this study to predict the minimum transport velocity that will keep sand particles in motion 
in multiphase solid-liquid-gas flow lines and pipelines. The models correlate the critical 
velocity in terms of sand particle concentration, diameter of the pipe, superficial velocity, 
inclination angle, and diameter of the sand particle. The physics-informed neural networks 
showed a better prediction capability than the MLP Regressor, with an R2 score of 0.9999 and 
RMSE of 0.00465. The MLP Regressor also performed well with R2 scores of 0.9992 and RMSE 
of 0.0295, respectively. The developed models were compared with existing empirical and 
data-driven models. From the outcome, the two models performed better in predicting the 
minimum transport velocity with PINN performing best. This research has the potential to 
significantly impact the field of fluid dynamics and machine learning applications, particularly 
in the development of machine learning models that incorporate physical laws to indicate the 
minimum transport condition. Additionally, the potential for more accurate physical laws to 
be investigated with more experimental data and parameters collated for more robust 
modelling of the minimum transport condition is a promising avenue for future study, further 
highlighting the significance of the work. 
 

NOMENCLATURE 

Symbol Definition 

MTC  Minimum Transport Condition 

PINN Physics-Informed Neural Network 

MLP Multilayer Perceptron Regressor 

CFD Computational Fluid Dynamics 

ANN Artificial Neural Network 

SVR Support Vector Regression 

ANFIS Adaptive Neuro-fuzzy Inference System 

RSM Response Surface Methodology 

RMSE Root Mean Squared Error 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

R² Coefficient of Determination 
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FFA Firefly Optimization Algorithm 

SPBO Student Psychology-Based Optimization 

SVM Support Vector Machine 

CART Classification and Regression Tree 

KAN Kolmogorov Arnold Networks 

PG Pressure Gradient 
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