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Abstract 
During end milling, the residual stresses is developed from two sources which includes, stresses due to plastic 
deformation of material and then stresses due to thermal energy generated. This work looks into the two sources 
combined into one and then predicts how to best combine the machining parameters in order to minimize the 
residual stresses in the components. The aim of this work is to develop a mathematical model that can be used to 
predict the residual stresses in milling. Analytical method was used in developing this model; the model captured the 
mechanical stress and the thermal stress. The simulation was done with MATLAB and from the results obtained; it 
was observed that mill cutter with nose radius of 0.4mm and a constant cutting speed of 3m/min while the depth of 
cut varies from 0.1mm to 0.4mm, the resulting residual stress varied from 50MPa to 150MPa respectively.  From the 
graphs it was also observed that the value of the residual stress at a particular depth of cut is the same in both the 
x-x and z-z directions and that the stress reduces exponentially as it approaches zero. 
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1.0 INTRODUCTION  

Residual stress exists in a body after all the external loads are removed. Manufacturing 
processes are the most common causes of the residual stress. The effects of residual stress could 
be both positive and detrimental on the deformation behavior, fatigue life, dynamic strength, 
chemical resistance and magnetic properties of machined component (Wu and Matsumoto, 
1990) such as the turbine engine fan blades. Laser peening imparts deep beneficial compressive 
residual stresses into metal components and it is used in toughened glass to allow for large, thin, 
crack and scratch-resistant as found in glass displays on smart phones. In machining, the sources 
of residual stress include plastic deformation of the material and high thermal gradients in the 
cutting zone. These two sources are complex and do affect each other. Plastic deformation 
occurs during chip formation when the material is being sheared in the cutting zone. Residual 
stresses play an important role in the performance of machined Components. The functional 
behavior of machined components can be enhanced or impaired by residual stresses (Su, 2006).  
 
Thus, the residual stress imparted by machining is an important aspect of research on machining 
and overall part quality. The residual stresses induced by turning are tensile at the surface and 
compressive as machining depth increase, while the milling operation with induces more 
compressive residual stresses (Wang et. al, 2017). Residual stress is measured by either 
destructive or non-destructive method. A typical example of the non-destructive method is the 
X-ray diffraction, while the destructive method which are all based on the principle of stress 
relaxation includes hole drilling and ring coring, deep hole drilling, and the slit milling method 
(Mansilla et. al, 2015). 
 

2.0 THERMO-MECHANICAL MODELING OF STRESSES 
Analytical method of modelling is used in this work. This is because it gives the most accurate 
value in the prediction of the residual stress. 
 
 

Ojolo, S.J., Ogundare, A.A., Kofoworola, O. 
Mechanical Engineering Department, University of Lagos, Nigeria 

Email: sojolo@unilag.edu.ng  

Mathematical Modelling of Residual Stresses in End Milling 



JER Vol. 23, No.2 Ojolo et al. pp. 35-44 
 

36 
 

 
2.1 Cutting Force Model 
The stresses generated in the work piece during cutting are due to traction in the shear zone and 
traction due to the rubbing of the tool edge on the surface of the work piece. 

 

 
 Figure 1: Orthogonal cutting cutting operation model 

 
From Figure 1, the differential tangential tdF , radial rdF  and axial adF  cutting forces acting on 
infinitesimal cutting edge segment form the governing equations, which are: 
 

( , , ) ( , , ) ( , , )t t c t cdF i j k K A i j k K t i j k dz= =                                   (1) 
( , , ) ( , , k)dzr r t r t cdF K dF i j k K K t i j= =                                    (2) 
( , , ) ( , , )a a t a t cdF K dF i j k K K t i j k dz= =                                    (3) 

 
The axial force, adF acts on the elemental disk along with the tangential force and radial forces. 
This force is present since, in the general case, the helix angle of the end mill is non-zero, thus 
producing an oblique cutting geometry. The axial force, however, is typically much smaller than 
either the tangential or radial forces, and in addition does not contribute greatly to the bending 
moment produced on the cutter. Thus, the axial force may be neglected. 
 

( , , ) ( , , ) ( , , )t t c C cdF i j k K A i j k K t i j k dz= =                                     (4) 
Where, Sin ( , , ) /c t t f s ft f i j k f V N Nβ= =  

( , , )t t tdF K f Sin i j k dzβ=                                   (5) 

So, ( , , )t f
t

s f

K V
dF Sin i j k dz

N V
β=                                 (6) 

Similarly, ( , , )r t f
r

s f

K K V
dF Sin i j k dz

N V
β=                             (7) 

But, ( , , ) ( ) ( 1) f hxi j k j Kβ θ γ γ= − + − −  and ( ) tanhx htz t RADγ α=  

Thus, 
( ) tan( , , ) ( 1) ( )hx

f
z ti j k K j

RAD
αβ γ θ= + − −                         (8) 

So that, 
( ) tan ( 1) ( )t f hx

t f
s f

K V z idF Sin K j dz
N N RAD

α γ θ = + − −  
                  (9) 

Likewise, 
( ) tan ( 1) ( )r t f hx

r f
s f

K K V z idF Sin K j dz
N N RAD

α γ θ = + − −  
                 (10) 
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On integration and further simplification of the trigonometric factors, 

( )
( ) ( ) tan

2 ( ) ( ) tan
tan

( 1) ( )

u l hx
t f u l hx

t
s f hx

f

z i z i
K V z i z iRAD RADF Sin Sin dy

N N RAD
K j

α
α

α
γ θ

  + 
−     =      

    + − −  

       (11) 

( )

( ) ( ) tan
22

( ) ( ) tantan
( 1) ( )

2

u l hx

r t f
r

u l hxs f hx
f

z i z i
Sin

RADK K V RADF
z i z iN N

K j Sin
RAD

α

αα
γ θ

 +  
      =    −    + − −  
   

            (12) 

Where, ( ), ,tdF i j k is the elemental tangential force, ( , , )rdF i j k is the elemental radial force,    

( , , )cA i j k  and ( , , )ct i j k dz  is the contact area or chip load, ( , , )ct i j k  is the uncut chip thickness, 
and tK  and rK  are the empirically determined function. hxα  is the helix angle of the end mill. 
Given the existence of cutter run out, it has been shown (Kline et al., 1982; Sutherland and Devor, 
1986) that the chip thickness may be expressed as 
  

[ ]( , , ) ( , , ) ( , k,m)c tt i j k Min mf Sin i j k R iβ= +  

( )
( ) ( )( )

1
2 2 2

2

2 cos 1
( , , )

cos cos 1

f

f

RAD RAD K hx
R i j k

L Z Sin RAD K

ρ ρ λ γ γ

τ ρ φ λ γ

  + + − − −  =
  + − + − −  

                (13) 

 
ρ and λ are parameters which describe the parallel axis offset. τ  and φ  are parameters which 
describe the cutter tilt geometry. Z  is the distance from the fixed end of the cutter to the axial 
position of interest, and m  is an index used to consider proceeding flutes. 
 
However, in end milling process, both primary and regenerative feedbacks are present. With the 
incorporation of both the primary and the regenerative feedback effects, the chip thickness may 
be expressed as 

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

, j, k , ,

, , , , , ,

, ( , ) cos . .

t

c

mf Sin i R i k R i k m

t i j k Min x i j x i n Sin i j k

y i j y i j i j k

β

β

β

 + − −
 

= + −    
 
− −    

                   (14) 

( , )x i j  is the relative displacement in the x -direction of the axial disk at the angular position of 
the end mill from the work piece, and ( , )y i j  is the displacement in the y -direction, 

( ) ffj k m
n

d
γ

θ
− −

=
                                            (15) 

 
2.2 Mechanical Stress Model 
Considering the mechanical loading due to the cutting forces, assuming a state of plane strain in 
y -direction ( )0yyε = , stresses under the normal compressive pressure radial force, rF  and 

tangential traction, tF  as given with the associated coordinate system are estimated using 
contact mechanics 
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( )
( )

( )
( )

2 3

2 22 22 2

2 2a ar tmech
xx a a

F x s F x sz ds ds
x s z x s z

σ
π π− −

− −−
= −

   − + − +   
∫ ∫               (16) 

( )
( )

( )

3 2

2 22 22 2

2 2a a tmech r
zz a a

F x sFz zds ds
x s z x s z

σ
π π− −

−−
= −

   − + − +   
∫ ∫              (17) 

( )
( )

( )
( )

22

2 22 22 2

2 2a ar tmech
xz a a

F x s F x sz zds ds
x s z x s z

σ
π π− −

− −−
= −

   − + − +   
∫ ∫                 (18) 

On integrating the above with the limit of the integrals [-a, a] as a function of the cutting edge 
radius, we get 

( ) ( )
( )

( )( )

2 2 2 2 2

2 2 2

2 2 2 2 2

ln 2 ln 2

2 2
arctan arctan

2 2

mech st
xx

r r t rr
s

F
a as s z a as s z

az a F s F szF z FF a s a s
z z a as s z a as s z

σ
π

π π

 = − + + − + + + 

− + + − +    − − +     − + + + + +    

                     (19) 

 

( ) ( )
( )

( ) ( )
( )

( ) ( )

2 2 2 2 22 2
3

2 2 2 2 22 2

2

2 2 2 2 2 2

22( ) 1 arctan
4 2 222

22( ) 1 arctan
4 2 22

2 1 1
2 2 2 2

mech r
zz

t

a sa s
z a as s z zz zz F

a sa s
z a as s z zz z

z F
a as s z a as s z

σ
π

π

  
 − −  + ×     − + +        = −

  
 + +   + + ×     + + +       


+ −

− + + + + +





    (20) 

( ) ( )

( ) ( )
( )

( ) ( )
( )

2

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 1 1
2 2 2 2

21 arctan
2 2 2 2 2 22

21 arctan
2 2 2 2 2 2

mech r
xz

t

z F
a as s z a as s z

a sa s
a as s z a as s z z zzF

a sa s
a as s z a as s z z z

σ
π

π

 
 = −

− + + + + +  
   − 

− − ×    − + + − + +   
+  

  +  
+ + + ×    + + + + + +     

         (21) 

 
2.3 Thermal Stresses 
 Modelling the internal heat generation in the work piece is 

g f sQ Q Q= +                                         (22) 

fQ is the friction heat generation and sQ is the shear or plastic deformation heat generation 

( ) ( )
sin

cos sin
n

f f c
n n n n n

hV
Q F V

τ β
ϕ β α ϕ α

= =
+ − −

             and          
( )

cos
sin cos

n
s s c

n n n

hV
Q F V

τ α
α ϕ α

= =
−
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( ) ( )
( ) ( ) ( )

sin sin cos( ) cos cos sin
sin sin cos cos

n n n n n n n n n n
g

n n n n n n n n

Q hV
β α ϕ α α ϕ β α ϕ α

τ
α ϕ α ϕ α ϕ β α

 − + + − −
=  − − + − 

      (23) 

Replacing the terms in parenthesis withη , gQ becomes 

gQ hVητ=                                          (24) 
The resulting thermal stress components from the thermal stresses developed by [7] are 

( ) ( )

( )
( )

( )

1 1 1 1 1 1

0

2

22 2

, ,
1 2

( ) ,2
1 2

ther
xx xh xv

E T TG x z G x z dx dz
x x

t t x ET x zz dt
t x z

ασ
ν

ρ α
π ν

∞ ∞

−∞

∞

−∞

− ∂ ∂ = + − ∂ ∂ 

 
− + −  − − +   

∫ ∫

∫
                (25) 

( ) ( )

( )
( )

1 1 1 1 1 1

0

3

22 2

, ,
1 2

,2 p( )
1 2

ther
zz zh zv

E T TG x z G x z dx dz
x x

ET x zz t dt
t x z

ασ
ν

α
π ν

∞ ∞

−∞

∞

−∞

− ∂ ∂ = + − ∂ ∂ 

 
 + −  − − +   

∫ ∫

∫
                (26) 

( ) ( ) ( )
( )

2
1 1 1 1 1 1

22 20

p( )2, ,
1 2

ther
xz xzh xzv

t x tE T T zG x z G x z dx dz dt
x x t x z

ασ
ν π

∞ ∞ ∞

−∞ −∞

 
−− ∂ ∂   = + +   − ∂ ∂   − +   

∫ ∫ ∫     (27) 

Where, 
( ) ( ),

1 2
ET x z

p t
ε

ν
=

−  
 
For a two dimensional temperature distribution; 

( )
( )

2 2

4
3
2

, ,
4

x z
tQT x z t e

t
α

πα

+
−

=                               (28) 

( )

2 2

4
3
22 4

x z
tdT Qx e

dx t t
α

α πα

+
−

= −                               (29) 

( )

2 2

4
3
22 4

x z
tdT Qx e

dz t t
α

α πα

+
−

=                                (30) 

 
Considering heat sources at points 1r  and 2r . The Green’s function for this space of thermal 
conductivity, k   is 

( ) ( )'
1 2

1 1 1, ,
4xxhG x h G G X X

k r rπ
 

= = = − 
 

                       (31) 

Where ( ) ( )2 2' '
1r x x z z= − + −  and ( ) ( )2 2' '

2r x x z z= + + +  
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( ) ( )
( ) ( ) ( ) ( )

'

2 2 2 2' ' ' '

1 1 1, ,
4xxhG x h G G X X

k x x z z x x z zπ

 
 = = = − 

− + − + + +  

    (32) 

Therefore, the value of the thermal stress in the x x−  and z z−  direction are as follows 

( ) ( ) ( ) ( )
( )( )

( )
( )

'

2 2 2 2' ' ' '0

2

22 2

1 1 '

.2
1 2

therm
xx thermK dx dz

x x z z x x z z

p t t x ET X Yz dt
t x z

σ

α
π ν

∞ ∞

−∞

∞

−∞

 
 = − 

− + − + + +  

−
+ −

− − + 

∫ ∫

∫

         (33) 

( ) ( ) ( ) ( )
( )( )

( )
( )

'

2 2 2 2' ' ' '0

2

22 2

1 1 '
4

.2
1 2

therm therm
xx

K
dx dz

k x x z z x x z z

p t t x ET X Yz dt
t x z

σ
π

α
π ν

∞ ∞

−∞

∞

−∞

 
 = − 

− + − + + +  

−
+ −

− − + 

∫ ∫

∫

         (34) 

Where, 
( )( )

2 2

' '4
3
2

( , z )
4 1 2 4

x z
t

therm
EQxK e x

kt t
α

π υ πα

+
−

= −
−

  

 
2.4 Residual Stress Model 
The resultant residual stress is the addition of the mechanical stress and thermal stress in the 
various directions respectively. Therefore, residual stresses are given as 

r mech therm
xx xx xxσ σ σ= +                                   (35) 
r mech therm
zz zz zzσ σ σ= +                                   (36) 
r mech therm
xz xz xzσ σ σ= +                                   (37) 

 
 
3.0 SIMULATION AND DISCUSSION 
The results of the simulation of the residual stress for the developed model are shown below. 
The predicted residual stress follows the same trend as the depth of cut varied in the modelling 
of residual stresses (Ulutan et. al, 2007). The residual stress is a function of depth of cut when 
nose radius is kept constant.  The simulation was done using a nose radius of 0.4mm with depth 
of cut ranging from 1mm to 4mm. 
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Figure 2: A plot of the depth beneath the surface of the work piece against the residual stress in x-x direction at 

a depth of cut of 1mm 

 
Figure 3: A plot of depth into the work material against residual stress in the z-z direction at a depth of cut of 

1mm 
 

 
Figure 4: A plot of depth into the work material against residual stress in the x-x direction at a depth of cut of 

2mm 
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Figure 5: A plot of depth into the work material against residual stress in the z-z direction at a depth of cut of 

2mm 

 
Figure 6: A plot of depth into the work material against residual stress in the x-x direction at a depth of cut of 

4mm 
 

 
Figure 7:  A plot of depth into the work material against residual stress in the z-z direction at a depth of cut of 

4mm 
 
Figure 2 shows the residual stress in the x x−  direction at a depth of 1mm beneath the surface 
of the work piece. The maximum residual stress is 50 MPa at the surface of the material and 
reduces exponentially towards zero as the depth increased. This can be attributed to mechanical 
stresses due to the effect of edge radius between the tool and the work piece and the thermal 
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stress. The thermal stress decreases exponentially as the moving tool creates a moving heat 
source which determines the temperature rise due to rubbing between the cutting edge and the 
work piece and is highest at the point of contact with the work piece. Also, the residual stress 
becomes negligible at a depth of more than 80 microns beneath the surface of the material 
which agrees with (Liu et. al, 2004) in which a maximum stress of about 110 MPa and residual 
stress becoming negligible at a depth of 90 microns beneath the surface of the work piece. 
 
Figure 3 shows the residual stress value at a depth of 1mm, and nose radius of 0.4mm in z z−   
direction, it shows that residual stress are significant at the surface, this is as a result of the 
combination of the mechanical stress and thermal stress which emerges from the cutting force 
action, which also is in agreement with (Okushima and Kakino, 1972). The stress attains a 
minimum value at a depth of 100microns beneath the surface of the material. It reduces 
exponentially beneath the work piece, this is because during orthogonal cutting operation, the 
maximum work piece temperature occurs at the surface near the tool tip, and the temperature 
drops quickly behind the tool tip.   
 
Form Figure 4 the maximum residual stress increased to 85 MPa at the surface of the material, 
because the Cauchy stress tensor increased and becomes negligible at a depth of more than 60 
microns beneath the surface of the material, this is because a larger shear angle is produced 
which alters the penetration depth. This agrees favourably with the work of (Ulutan et al., 2017).   
 
In Figure 5 the maximum residual stress of 70 MPa was obtained at the surface of the material 
and reduces exponentially towards zero with the depth beneath the material. It is observed that 
the residual stress becomes negligible at a depth of close to 100 microns beneath the surface of 
the material. This can be compared reasonably with Figure 3 where a maximum stress of about 
50 MPa is reached and approaches a minimum value at a depth close to 100microns beneath 
the surface of the work piece 
 
Figure 6 shows a plot of the depth beneath the surface of the work piece against the residual 
stress in x x−  direction at a depth of cut of 4mm and nose radius of 0.4 mm. The maximum 
residual stress is 150 MPa at the surface of the material. This agrees with the effect of 
temperature on residual stresses being more prominent at the surface as predicted by (Su, 
2006). It reduces exponentially towards zero with the depth beneath the material. It is observed 
that the residual stress becomes negligible at a depth of more than 60 microns beneath the 
surface of the material, this agrees with (Ulutan et al., 2017) who discovered that the residual 
approaches zero with various nose radius value and depth of cut values. Figure 7 which shows a 
plot of the depth beneath the surface of the work piece against the residual stress in x x−  
direction at a depth of cut of 4mm and nose radius of 0.4 mm result follows similar assertions 
from the previous graphs and discussions 
 
4.0 CONCLUSION 
The mathematical model showed how the residual stresses varied from 50MPa to 150MPa at 
values of depth of cut varying from 1mm to 4mm. It was shown that the residual stress has the 
same profile for all values of the depth of cut. The method was able to accurately predict the 
stress profile beneath the surface of the work piece. This clearly showed that there is an 
exponential reduction of the stress as it approaches zero beneath the surface of the work piece. 
The model was able to capture the residual stress by capturing the forces involved while taking 
into consideration the forces due to temperature variation. The model allows the prediction of 
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residual stresses with acceptable accuracy. With specified cutting parameters, the model can be 
used to predict the residual stress in milling operations.  
 
REFERENCES 
Kline, W. A., Devor, R. E., and Lindberg, J. R., (1982). The prediction of cutting forces in end milling with application 
     to cornering cuts. International Journal of Machine Tool Design and Research, 22(1): 7-22. 
Liu, M., Takagi, J. I. and Tsukuda, A. (2004). Effect of Tool Nose Radius and Tool Wear on Residual Stress 
     Distribution in Hard Turning of Bearing Steel. Journal of Materials Processing Technology, 150(3): 234- 

241 
Mansilla, C., Martinez-Martinez, D., Ocelik, V., and De Hosson, J. T. M. (2015). On the determination of local 
     residual stress gradients by the slit milling method. Journal of Materials Science, 50(10): 3646-3655. 
Okushima, K., and Kakino, Y. (1972). Study of the residual stress produced by metal cutting, Mem. Fac. Eng. Kyoto 
     Univ., April, 34(2): 234-248. 
Su, J.C., (2006). Residual stress modeling in machining processes, Georgia Institute of Technology: Atlanta. 
Sutherland, J. W., and Devor, R., (1986). An improved method for cutting force and surface error prediction in 

 flexible end milling systems. Journal of engineering for industry, 108(4): 269-279. 
Ulutan, D., Alaca, B. E., and Lazoglu, I. (2007). Analytical modeling of residual stresses in machining. Journal of 

 Materials Processing Technology, 183(1):77-87. 
Wang, J., Zhanga, D., Wua, B., Luo, M. (2017). Residual Stresses Analysis in Ball end Milling of Nickel-Based     
    Superalloy Inconel 718, Materials Research. 20(6): 1681-1689 
Wu, D.W. and Matsumoto, Y. (1990). Effect of hardness on residual stresses in orthogonal machining of ANSI 
     4340 steel. Journal of Engineering for Industry, 112(3): 245-252. 
 
 
 
 


	1.0 Introduction
	2.0 Thermo-Mechanical Modeling of Stresses
	Replacing the terms in parenthesis with, becomes


