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Abstract 
One of the major problems associated with history matching is the non-uniqueness of the solutions. A major flaw in 
this traditional history matching is that it lacks robustness as it shows a bias to the production data being matched 
while neglecting the mechanics governing other production data and such solutions generated are erroneous and 
gives a poor representation of the reservoir being matched.  
In this study, data driven and numerical modeling of a synthetic PUNQS3 reservoir were carried out. Single 
objective function, aggregated and multi-objective functions were adopted for the reservoir history matching. A 
proxy model was developed with data generated from a reservoir simulator using Artificial Neural Network (ANN) 
and the Response Surface Methodology (RSM). Firefly Optimization (FFO), Genetic Algorithm (GA) and Particle 
Swarm Optimization (PSO) algorithms were used for the history matching process.  
The results showed that the history matching process was strongly influenced by porosity and permeability. The 
interaction between the two was also established. The ANN appeared to provide a better match of the simulated 
data compared with the RSM. Although aggregated method of optimization is less computational expensive, the 
multi-objective approach provided a superior history matching optimization. The observed misfit values were 
0.074, 0.073, and 0.073 for GA, PSO and FFO algorithms respectively for cumulative oil production history 
matching. Better predictions were obtained using the FFO and PSO compared with GA for single and aggregated 
objective function optimization. This work can be extended to investigate the performance of FFO and other recent 
methods using multi-objective approach and the influence of objective function on history matching. 
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1.0 INTRODUCTION   

eservoir modelling and indeed history matching can be complex, time consuming and yet 
laden with high level of uncertainty. A major problem encountered in reservoir modelling is 

the non-uniqueness of solutions to inverse problems in the reservoir parameters estimation.  A 
reservoir model is said to be calibrated and useful in forecasting when it can accurately 
reproduce the historical data of the reservoir system. History matching is usually done to 
achieve this. History matching is a procedure in which certain reservoir parameters (porosity, 
permeability, saturation, relative permeability, e.t.c) are changed independently or on the 
whole to get a match between predicted values and the observed historical data. The 
parameters are tuned accordingly to fit historical rates such as oil, water and gas, percentage 
water cuts, pressure drops and their variations during the life of a field (Negash et al., 2016). 
The heterogeneous distribution of the reservoir geology results makes history matching a 
complex undertaking. It can be a tedious exercise in any reservoir management process 
(Maschio and Schiozer, 2005).  
 
The objective of a good history matching study is to get a reliable production forecast by 
improving reservoir models. Traditionally, this is done by tweaking model parameters 
randomly until the correct match is found. This is not only time consuming but also the 
calibrated model obtained from such process is less robust and may not be able to predict the 
reservoir behaviour outside the range of the tuned parameters. Automated history matching 
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has been observed to help accelerate history matching process and also to obtain more robust 
validated reservoir models(Kabir, Chien and Landa, 2013; Shams, 2017).  
 
The earliest efforts on automated history matching were not so successful as most of the 
published algorithms are of little applications due to high computational expense when applied 
to large reservoirs (Kabir, Chien and Landa, 2013). Example of such work was a simplified two 
dimensional, incompressible two phase reservoir model coupled with a Genetic Algorithm (GA) 
for history matching (Xavier et al., 2013). Although such approach was useful in understanding 
the application of GA in history matching, a full-scale reservoir model coupled with the 
proposed algorithm would be impractical. The use of proxy models in estimating complex 
systems such as reservoirs and automated history matching process has been observed to yield 
excellent results. Some of the proxy model techniques available are:  the Aenic Algorithm (Sun 
and Mohanty, 2005), Surrogate Models (Queipo et al., 2000), Polynomial Models (Sarma and 
Xie, 2011)  and so on. Although, proxy models can be helpful in estimating complex systems 
without solving the computationally involving mathematical equations which describe the 
physics of such system, they must be applied with caution as they function as a black-box 
model which is data driven and neglects the underlying principles of physics (Awasthi et al., 
2007). Many authors have recently concentrated efforts at developing approaches based on 
the use of proxy models and stochastic algorithms for automated history matching (Yeten et 
al., 2005; Silva, Maschio and Schiozer, 2008; Negash et al., 2016; Kim et al., 2017; Shams, 2017; 
Wantawin, Yu and Sepehrnoori, 2017).  
 
 Yeten et al. (2005) focused on the development proxy models using multiple Design of 
Experiment (DOE) methods. Their results showed that the space filling design gave better 
results compared with traditional designs. However, their work was not extended to optimizing 
the history matching process.  
Silva et al. (2008) developed a proxy model using Artificial Neural Network (ANN) and 
optimized the history process with an evolutionary algorithm. Although the developed model 
compared well with the field and synthetic data, other data driven approaches that might have 
given better predictions were not investigated.  
 
Multi-objective algorithms were investigated for the optimization of a synthetic PUNQ-S3 
reservoir model by Negash et al. (2016) using Multi-Objective Genetic Algorithm (MOGA) and 
Multi-Objective Goal Attainment Algorithm (MOGAA). The proxy model was obtained using 
Response Surface Method (RSM). The result from MOGAA was observed to possess superior 
accuracy compared with MOGA. Although this work provided a robust inroad to multi-
objective history matching, the number of algorithms investigated was limited. In Kim et al. 
(2017), Fast marching method was used for proxy model and multi-objective evolutionary 
algorithm for the history matching of a shale gas reservoir. The evolutionary algorithm was 
tested for single objective, aggregated and multi-objective function. They reported a superior 
performance of the multi-objective approach compared to single and aggregated objective 
functions for this algorithm. 
 
Wantawin, Yu and Sepehrnoori (2017) developed a workflow for the history matching of a tight 
oil reservoir using DOE, RSM, and Markov chain Monte Carlo (MCMC) algorithm. Their results 
showed a promising technique for automated history matching. However, the MCMC required 
some degree of tuning such as step sizes and variances.  
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The Firefly Optimization calculation (FFO)  introduced by Yang (2009) was recently applied to 
history matching in Shams (2017). This algorithm was compared with Particle Swarm 
Optimization (PSO) and GA for a simple tank reservoir model using a single objective function 
approach. It was observed that FFO provided a better optimization of the history matching 
process. However, the application of FFO to aggregated and multi-objective functions was not 
investigated. 
 
Other authors have worked on various methods for history matching optimization. The process 
has been optimized using PSO method (Mohamed et al., 2010; Mohamed, Christie and 
Demyanov, 2011), GA (Romero et al., 2000; Kumar and Rockett, 2002; Zhang et al., 2012), 
Adaptive Neuro-Fuzzy Inference System (ANFIS) (Rammay and Abdulraheem, 2014) and FFO 
algorithm (Shams, 2017). Apart from Firefly algorithm, other methods have been applied to 
aggregated and multiple objective history matching in various degrees. It is therefore 
important to investigate this new algorithm (FFO) for multi-objective history matching 
optimization. 
 
This study evaluated the efficiency of ANN and RSM in accurately predicting the reservoir 
behaviour. The performance of the proxy models was assessed using statistical indices such as 
the coefficient of determination (R2) and Mean Square Error (MSE). The influence of reservoir 
parameters and their interactions were also investigated using Plackett-Burman and Central 
Composite Design. The well-investigated optimization algorithms (GA, PSO) were used for 
single objective, aggregated and multi-objective history matching while the Firefly Optimization 
(FFO) algorithm was extended to optimize aggregated multi-objective history matching 
optimization for the first time in this study and the results were compared. 
 

2.0 MATERIALS AND METHOD 

2.1 Study Area 

The data used in this work was adapted from the production data of synthetic PUNQ-S3 
reservoir which has been used as a benchmark standard previously (Maunde et al., 2013; 
Hutahaean, Demyanov and Christie, 2016; Negash et al., 2016). The reservoir model is 
characterised as a small-scale model made up of 19 x 28 x 5 blocks of which only 1756 are said 
to be active. It has five unique layers at a top structure of 2430 m at an angle of 1.5 degrees, 
the top structure map in Figure 1 shows that the reservoir is bounded by a fault, and is linked 
to a strong aquifer. More on this reservoir has been documented in literatures (Maunde et al., 
2013; Hutahaean, Demyanov and Christie, 2016; Negash et al., 2016)  
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  Figure 1 PUNQ S-3 Top Structure Map (Hajizadeh, Christie and Demyanov, 2011). 
 

From these set of historical data, the field Cumulative Oil Production (Cum_Oil), Field 
Cumulative Gas Production (Cum_Gas) and Field Cumulative gas oil ratio (Cun_GOR) were set 
as the history matching objective parameters. 
 
Table 1  Reservoir Properties of the PUNQ S3  
Parameter Certain Value Uncertain Range 

Pinchout thickness   

Aquifer 1 thickness    

Aquifer 1 porosity    

Aquifer 1 permeability    

Aquifer 1 radius    

Aquifer 2 thickness    

Aquifer 2 porosity    

Aquifer 2 permeability    

Aquifer 2 radius    

Reservoir size    

Total compressibility    
Water formation volume factor    

Water compressibility    

Bubble point pressure    

Porosity (    

Layer 1 permeability    

Layer 2 permeability    

Layer 3 permeability    

Layer 4 permeability    

Layer 5 permeability    
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Figure 2 Work flow for the  study 
Figure 2 shows the work flow used for this study which was adopted from Negash et al. (2016)  
 

2.2 Design of Experiment and Simulation 

In order to evaluate the efficiency of ANN and RSM in accurately predicting the reservoir 
behaviour, proxy models were developed and their performance assessed. The first step in 
achieving this objective was to design experiments to investigate as many reservoir parameters 
upon which the reservoir behaviour depends and to minimise the number of simulation runs 
needed. Design expert software package was used for the design of experiment. For this work, 
vital reservoir parameters (the porosity and permeability in each of the five layers) were 
examined to see their influence and interaction using Plackett-Burman and Central Composite 
Designs (CCD). The Plackett-Burman design helped in characterising the parameters and 
thirteen interactions were observed while the Central Composite Designs (CCD) estimated forty 
experimental runs to adequately capture the response surface of the model. Table 2 shows a 
section of the experimental runs.  
 

Table 2 Simulation runs to calibrate the proxy model 

  Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Response 1 Response 2 
Response 

3 

Std Run A:Porosity 
B:Perm 

1 
C:Perm 

2 
D:Perm 

3 
E:Perm 

4 
F:Perm 

5 
Cum_Oil Cum_Gas Cum_GOR 

        m3 m3 m3/m3 

39 1 0.175 415 415 415 415 415 1.20147E+06 1.43592E+08 119.513 

34 2 0.175 415 415 415 415 1017.56    

11 3 0.25 30 30 800 800 30 1.20719E+06 8.98653E+07 74.4415 

18 6 0.1 30 30 30 30 800 762382 6.79217E+07 89.0915 

22 7 0.1 30 800 30 800 800 1.20719E+06 1.1128E+08 92.1807 

20 11 0.1 800 800 800 800 800 1.20719E+06 1.24841E+08 103.414 

1 12 0.1 30 800 800 30 800 1.04931E+06 1.09462E+08 104.318 

16 13 0.25 30 30 30 800 800 1.20719E+06 8.68132E+07 71.9132 
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7 14 0.25 30 30 800 30 800 1.05499E+06 7.60552E+07 72.0913 

37 16 0.175 415 415 415 415 415 1.20147E+06 1.43592E+08 119.513 

40 17 0.175 415 415 415 415 415 1.20147E+06 1.43592E+08 119.513 

9 18 0.25 30 800 30 30 30 595141 4.62586E+07 77.7271 

12 19 0.25 800 30 800 800 800 1.20719E+06 1.10234E+08 91.3139 

38 20 0.175 415 415 415 415 415 1.20147E+06 1.43592E+08 119.513 

  
The experiments were performed using a reservoir simulator to simulate the reservoir 
production data on well basis.  
 
2.3 Proxy Modelling and Unknown Parameter Estimation 
The data generated from the forty simulation runs (experimental runs) were divided to train, 
evaluate and test the developed ANN model using MATLAB. The procedure in Ehinmowo, 
Bishop, and Jacob, (2017) was adopted. The Bayesian Regularization algorithm gave the best 
performance compared with the Levenberg-Marquardt and Scaled Conjugate Gradient 
algorithms. 
The RSM was also used to generate a proxy model and its predictive capability compared with 
that of ANN model. The unknown parameters were estimated.  
 
2.4 Objective Function and history matching optimization 
A modified least square error was used in defining the misfit between the observed data and 
the response of the proxy model. Optimization was carried out on the single objective function 
for Cum_Oil eqn.(1), Cum_Gas eqn.(2), Cum_GOR eqn.(3), Aggregated objective function 
eqn.(4) and the Non-dominated multi-objective function. The bases for the oil, gas and gas oil 
ratio (GOR) are 110000 m3, 110000000m3 and 90 respectively in SI units. For each component 
objective function in aggregated objective function, weights value of 1 was assigned as shown 
in equation (4).  Equations (1), (2) and (3) were optimized simultaneously using the multi-
objective optimization algorithms to achieve the multi-objective history matching optimization 
while equation (4) was used for aggregated -objective approach. 
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The standard MATLAB algorithm for GA was used while the detailed algorithms for FFO and 
PSO, MOPSO are documented in Yarpiz (2018) and MOGA (Lin, 2018). 
 

3.0 RESULTS AND DISCUSSION 

3.1 Reservoir parameters’ influence and their interactions  
The results of the reservoir parameter influence and interactions are shown in Figures 3, 4 and 
5. The pareto charts showed that the porosity and permeabilities have the greatest influence 
on the reservoir behaviour, a total of 13 interactions were observed from the Packett-Burman 
DOE for the three historical objectives and thy were ranked for their interactions. This suggests 
that, to reduce the history matching error, attention must be paid to these two parameters. 
These results are in consonance with the once obtained by Aulia, Jeong, Mohd Saaid, Shuker, & 
El-Khatib (2017) for a highly faulted reservoir where the fault transmissibilities and 
permeabilities dominantly influenced the reservoir. 
 

 
Figure 1 Standardized chart for Field Cumulative Oil Production 
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Figure 2 Standardized chart for Field Cumulative Gas Production 

 

Figure 3 Standardized chart for Field Cumulative Gas Oil Ratio 
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3.2 Proxy Models and performance 

Response Surface Model 

Central composite design of experiment (CCD)  which appears to give a better system 
calibration was used in developing the RSM. CCD produced forty experimental runs to be used 
in to adequately capture the response surface of the reservoir simulator. 

The response surface plots as a function of porosity and permeability are shown in Figures 5, 6 
and 7 for Cum_Oil, Cum_Gas and Cum_GOR respectively. And the proxy models generated for 
Cum_Oil is given by equation (5), while equation (6) is for Cum_Gas and equation (7) 
represents the Cum_GOR . 

 

 

 

 

Figure 4 RSM plot for Cum_Oil varying only Porosity and Perm1 
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Figure 5 RSM plot for Cum_Gas varying only Porosity and Perm1 

 

 

 

 

 

Figure 6 RSM plot for Cum_GOR varying only Porosity and Perm1 
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Artificial Neural Network 

The dataset obtained from the central composite design of experiment was used as input to 
the MATLAB construct of the neural network. Twenty hidden neurons were selected to fit the 
network. Three different training algorithms, the Levenberg – Marquardt, Scaled Conjugate 
Gradient and Bayesian Regularization were all used in training the network. The training of the  
neural network models was done using 70 % of the data while validation and testing  used 15 % 
each of the data. The network architecture used for this work is shown in Figure 9. From the 
training exercise, Bayesian Regularization was selected to train the neural network as it 
effectively handled the noise in the dataset and gave the least mean square error when 
compared to the Levenberg – Marquar and Scaled Conjugate Gradient training algorithms. This 
is similar to the results obtained in Ehinmowo, Bishop, and Jacob, (2017) for the prediction of 
riser-base pressure in multiphase flow pipeline-riser systems. The Bayelsian Regularization 
plots for the cumulative oil, cumulative gas and gas oil ratio are shown in Figures 10, 11 and 12 
respectively with R2-values of about 99.9 % for cumulative oil, 99.6% for cumulative gas and 
99.5% for gas oil ratio. 

 

 

Figure 7 Network Architecture for the Neural Network 



JER SP Vol. 24 No. 2 Ehinmowo et al. P 91-110 

 

102 

 

 

 

Figure 10 Bayesian Regularization Training for the Cum_Oil response 

 

Figure 8 Bayesian Regularization Training for the Cum_Gas response 
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Figure 9 Bayesian Regularization Training for the Cum_GOR response 
 

Performance evaluation of ANN and RSM models. 

Table 3 shows the performance indices for the ANN and RSM proxy models. For the three 
models, the ANN proxy model predicted the reservoir properties at a higher degree of accuracy 
compared to the RSM and the ANN model was used for further optimization studies. The 
coefficient of determination and the mean square error values tabulated in Table 3 shows a 
superior performance of ANN model over RSM except for slightly higher R2 value for RSM 
prediction of Cum GOR. However, the MSE value of 6.02 was far greater than that of ANN 1.0 * 
10-19  This results confirmed the previous work of Ogaga et al., (2017) on the superior 

performance of an ANN-based data driven method over RSM. 

Table 3 Statistical indices for evaluating ANN and RSM models 

Objectives ANN RSM 

    

Cum_Oil 0.99902  0.9908  

Cum_Gas 0.99607  0.9954  

Cum_GOR 0.99697  0.9972 6.02 
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3.2 Stochastic history matching optimization 
The relevant reservoir parameters (porosity, permeabilities of all the five layers were optimized 
for best history matching of the cumulative oil, cumulative gas and cumulative gas oil ratio. The 
results are compared for all the optimization algorithms (GA, PSO and FFO) investigated and 
the methods (Single objective, aggregated and multi-objective). 
 
Table 4 History matching Optimization for Cum_Oil single Objective function 
 

Optimizer 

Best Values 
Cum_Oil 
Misfit 

Perm1 
(md) 

Perm2 
(md) 

Perm3 
(md) 

Perm4 
(md) 

Perm5 
(md) 

Porosity  

GA 30.031 232.388 799.989 82.471 694.769 0.247 0.074 
PSO 30.000 230.393 800.000 81.517 710.793 0.250 0.073 
Firefly 30.000 228.323 799.999 82.469 681.234 0.250 0.073 

 
Table 4 shows the predicted optimal conditions for GA, PSO and FFO algorithms. The optimal 
values predicted by PSO and FFO were better than that of GA. This confirms the recent report 
of  Fu & Wen (2018) that PSO possesses better performance compared with GA. Although 
Shams ( 2017) has also reported a superior performance of FFO over GA and PSO, in this study, 
it was observed that, FFO and PSO perform at the same level but FFO showed an added 
advantage in terms of speed . The difference in this performance can be as a result of the type 
of the objective function used (Bertolini and Schiozer, 2011). 
 
Table 5 History matching Optimization for Cum_Gas single Objective function 
 

Optimizer 

Best Values 
Cum_Gas 
Misfit 

Perm1 
(md) 

Perm2 
(md) 

Perm3 
(md) 

Perm4 
(md) 

Perm5 
(md) 

Porosity 

GA 800.000 58.050 31.607 117.656 800.000 0.166 -0.115 
PSO 30.000 155.861 800.000 800.000 800.000 0.250 -0.029 
Firefly 30.000 155.866 800.000 800.000 800.000 0.250 -0.029 

 
Table 5 shows the predicted optimal conditions for GA, PSO and FFO algorithms for cumulative 
gas single optimization. Results similar to the cumulative oil history matching optimization 
shown in Table 4 were observed.  However, for Cum_GOR shown in Table 6, FFO, GA and PSO 
all predicted the optimum conditions at the same level. 
 
Table 6 History matching Optimization for Cum_GOR single Objective function 
 

Optimizer 

Best Values 
Cum_GOR 
Misfit 

Perm1 
(md) 

Perm2 
(md) 

Perm3 
(md) 

Perm4 
(md) 

Perm5 
(md) 

Porosity 

GA 800.000 30.001 30.001 30.003 800.000 0.100 -0.178 

PSO 800.000 30.000 30.000 30.000 800.000 0.100 -0.178 
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Firefly 800.000 30.000 30.000 30.000 800.000 0.100 -0.178 

 
 
Table 7 History Matching Optimization for Aggregated Objective function 
 

Optimizer 

Best Values 
Aggregated 
Misfit 

Perm1 
(md) 

Perm2 
(md) 

Perm3 
(md) 

Perm4 
(md) 

Perm5 
(md) 

Porosity 

GA 800.000 32.849 183.079 102.289 799.996 0.152 -0.131 

PSO 800.000 32.925 183.972 102.182 800.000 0.153 -0.131 

Firefly 800.000 32.916 184.090 102.183 800.000 0.153 -0.131 

 
 
Three stochastic algorithms were used in optimizing aggregated objective function and the 
results shown in Table 7. The table shows that all the three algorithms performed at the same 
degree of optimization. Although Shams ( 2017) reported a superior performance of FFO over 
GA and PSO for a single objective function, similar was expected in this work. However, the 
results showed that they all performed at the same level and this can be due to the nature of 
the objective function adopted in this work. Bertolini & Schiozer (2011) observed that the type 
of objective function used has a great influence on the optimization process.  
 
Multi-objective history matching optimization 
 
The Multi-Objective genetic algorithm (MOGA) and Multi-objective particle swarm (MOPSO) 
algorithm were used for the multi-objective history matching optimization and their results 
compared. 
Figure 13 shows the pareto front plot for the MOGA while Figure 14 shows that of the MOPSO.  
 

 
 

Figure 13 Non-dominated solutions of Multi-Objective Optimization using MOGA 
 

Table 8 shows the optimum non-dominated solution of the pareto front plots shown in Figures 
13 and 14 for MOGA and MOPSO respectively. MOPSO yielded more highly ranked individuals 
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than MOGA with 200 to 50 solutions at the end of the run and obtained a wide diversity on its 
Pareto front. This observation confirms the recent work of Fu and Wen ( 2018). 
 

 
 
Figure 14 Non-dominated solutions of Multi-Objective Optimization using MOPSO 
 
 
Table 8 Multi-objective History matching Optimization  
 

 Unknown Parameters Misfit Value 

Perm1 
(md) 

Perm2 
(md) 

Perm3 
(md) 

Perm4 
(md) 

Perm5 
(md) 

Porosity 
 

Cum_Oil 
 

Cum_Gas 
 

Cum_GOR 

MOGA 585.815 224.722 771.887 73.371 800.00 0.243 0.092 0.028 -0.006 
MOPSO 582.470 198.772 793.339 74.227 793.154 0.235 0.074 0.117 0.105 
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Figure 10 Comparison of predicted data and various Dataset from Aggregated Functions and 
Multi-Objective Optimization for Cumulative Oil Production 

 

Figure 11 Comparison of predicted data and various Dataset from Aggregated Functions and 
Multi-Objective Optimization for Cumulative Gas Production 
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Figure 12 Comparison of predicted data and various Dataset from Aggregated Functions and 
Multi-Objective Optimization for Cumulative GOR 

 
 

Figure 15 shows the comparison of the aggregated and Multi-objective history matching 
performances of PSO, GA, MOPSO and MOGA. Interestingly, all these algorithms were able to 
provide a robust match for cumulative oil production. However, Figures 16 and 17 provided a 
different degree of performance for the aggregated function compared with the multi-
objective history matching optimization. The results shows that, effective history matching of 
cumulative gas production and Cum_GOR can be better achieved through a multi-objective 
history matching approach. This is in tandem with the work of Mohamed et al.( 2011) that a 
complex system can be best optimized using a multi-objectives approach. 
MOGA gave better a faster misfit convergence than the MOPSO and utilized less individuals in 
obtaining the result. This is supported by the work of Hutahaean et al.( 2016).  

4. CONCLUSION  

This study focused on the comparison of multi-objective optimization approaches and different 
algorithms in solving history matching problem. The following conclusions can be drawn. 
• Porosity and permeabilities of the reservoir layers greatly influenced the history matching 
process. Thus, these parameters must be closely watched if the history matching error is to be 
minimised. 
• The ANN generated proxy model performed better than that of RSM. 
• The single objective function  and aggregated approaches to optimizing history matching are 
limited to simple incompressible systems while the multi-objective approach performed better 
for more complex compressible systems 
• The new FFO algorithm extended in this work for aggregated optimization approach 
performed at the same level with PSO and GA. 
• The nature of objective function may greatly influence the optimization of history matching 
process and this is a subject of further studies 
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