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Abstract 
This work presents analytical and numerical analysis of the stability and bifurcation of a cantilevered pipe conveying 
pulsating two phase flow. Multiple scale perturbation technique is used to obtain the stationary trivial and nontrivial 
solutions of its response amplitudes. Clearly, the system exhibits both stable and unstable solutions depending on 
the detuning of the frequencies. The fixed point of the non trivial solutions of the pipe’s dynamics is a saddle node 
bifurcation. On the other hand, trajectories of the trivial solutions present subcritical pitchfork and supercritical 
pitchfork bifurcations at the critical points. Numerical simulations are observed to be in agreement with analytical 
results. Also, a study on the effect of void fraction on the bifurcation points shows that at post-critical mixture 
velocity, a defining void fraction exists when there is a transition between the subcritical pitchfork bifurcation point 
and supercritical pitchfork bifurcation. 
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1. INTRODUCTION   

nstability in pipes as induced by the conveyed fluid has been a consistent subject of interest in 
the field of fluid structure interaction. To date, literature emphasized the dynamics of pipes 

conveying single phase flow (Gregory and Paidoussis (1966), Paidoussis and Issid (1974), Shilling 
and Lou (1980), Semler; et al (1994), Ghayesh; et al (2013)). However industrial flows through 
pipes do not always exist as single phase. Depending on the temperature, pressure and nature 
of fluid; concurrent flow of two or more phases are conveyed by the pipes. Leveraging on the 
existing in-depth studies on pipes conveying single phase flow, recent publications have shown 
that pipes conveying two phase flow exhibits some complex and fascinating dynamics. Monette 
and Pettigrew (2004); published what might be one of the premier papers on the dynamics of 
pipes conveying two phase flow. The work used experimental and theoretical techniques to 
investigate fluid-elastic instability of flexible tubes that are subjected to two-phase flow. It 
established the relationship between the void fraction and the linear dynamics of the pipe. Also 
on two phase flows in pipes, Adegoke and Oyediran (2018); linearly studied the effect of 
temperature, pressure and void fractions on the attainment of the critical velocities via Argand 
diagrams. Furthermore, Adegoke and Oyediran (2017); studied the nonlinear vibrations of top-
tensioned cantilevered pipes using the method of multiple-scale assessment. The work revealed 
that at some frequencies the system is uncoupled, while at other frequencies a 1:2 coupling 
exists between the axial and the transverse frequencies of the pipe. Adegoke, et al. (2019); 
studied the nonlinear coupled parametric resonance of a cantilever pipe conveying pulsating two 
phase flow with the tendency of both phases pulsating at the same frequency.  Wang, et al. 
(2018); studied the dynamic behaviours of horizontal gas-liquid pipes subjected to hydrodynamic 
slug flow; modeling and experiments. The work adapted the linear equation of transverse 
motion for single phase flow to account for the two phases and resolved the modified equation 
using finite element method. In addition, experiments were performed to measure the 
characteristic parameters of the hydrodynamic slugs and the dynamics response of the pipe. 
Chen and Jian (2015); used the generalized integral transform technique to study the effect of 
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the volumetric quality and the volumetric flow rate on the dynamic behaviour of pipes conveying 
two phase flows.  
In this paper, the stability and bifurcations of a cantilevered pipe conveying pulsating two phase 
flow is studied using analytical and numerical techniques. The method of multiple scale 
perturbation is used to establish the parametric resonance relationship. The nature of the 
bifurcations exhibited by the pipe and the possible effect of variation in void fraction on the 
bifurcations are examined and the void fraction that precipitated to the transition between the 
supercritical and subcritical pitchfork bifurcations was investigated.  

2. PROBLEM FORMULATION AND MODELLING 

2.1. Assumptions 

Consider a cantilever cylindrical pipe of length (L), with a cross-sectional area (A), mass per unit 
length (mp) and flexural rigidity (EI), conveying multiphase flow; the flow is parallel to the pipe’s 
centre line. It is assumed that the velocity profile can be represented as a plug flow. The diameter 
of the pipe is small compared to its length, such that the pipe behaves like an Euler-Bernoulli 
beam. The motion is planar. The deflections of the pipe are large, but the strains are small. 
Rotatory inertia and shear deformation are neglected. Pipe centerline assumed to be extensible. 
 
 
 
 
 
 
 
 
 
 

Figure 1: System’s Schematics 

 

2.2 Equation of motion of an extensible cantilever pipe conveying multiphase flow 

The equations of motion for an extensible cantilever pipe conveying pressurized unsteady 
multiphase flow under thermal loading as expressed by Adegoke and Oyediran (2018) are 
presented as: 
 

(m+∑Mj

n

j=1

) ü +∑MjUj̇

n

j=1

+∑2MjUju̇
′

n

j=1

+∑Mj

n

j=1

Uj
2u′′ +∑MjUj̇ u

′

n

j=1

− EAu′′ − EI(v′′′′v′ + v′′v′′′)

+ (T0 − P − EA(α∆T) − EA)v
′v′′ − (T0 − P − EA(α∆T))

′
+ (m+∑Mj

n

j=1

)g

= 0                                                                                                                                              (1) 
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(m+∑Mj

n

j=1

) v̈ +∑2MjUjv̇
′

n

j=1

+∑Mj

n

j=1

Uj
2v′′ −∑aMj

n

j=1

Uj
2v′′ +∑MjUj̇ v

′

n

j=1

+ EIv′′′′

− (T0 − P − EA(α∆T))v
′′

− EI (3u′′′v′′ + 4v′′′u′′ + 2u′v′′′′ + v′u′′′′ + 2v′2v′′′′ + 8v′v′′v′′′ + 2v′′3)

+ (T0 − P − EA(α∆T) − EA) (u
′v′′ + v′u′′ +

3

2
v′2v′′)

= 0                                                                                                                                                   (2) 
       
The associated boundary conditions for a pipe from end 0 to L are: 

v(0) = v′(0) and v′′(L) = v′′′(L) = 0,                                                                                                  (3) 

u(0) = u′(L) = 0.                                                                                                                                   (4) 

2.3 Dimensionless equation of motion for multiphase flow 

Neglecting the axial direction, the transverse vibration’s equation of motion may be rendered 
dimensionless by introducing the following non-dimensional quantities; 

v̅ =
v

L
  ,   t̅ = [

EI

∑Mj+m
]

1
2⁄ t

L2
  ,     

�̅�j = [
Mj

EI
]
1
2⁄

UL , γ =  
∑Mj+m

EI
L3g,    

βj =
Mj

∑Mj+m
,    Ψj =

Mj

∑Mj
, Π0 =

ToL
2

EI
 ,  Π1 =

EAL2

EI
, Π2 =

PL2

EI
.  

 
The dimensionless equation can be reduced to that of a two-phase as: 
 

v̈̅ + 2�̅�1√Ψ1√β1v̇̅
′ + 2�̅�2√Ψ2√β2v̇̅

′ +Ψ1𝐔1̅̅̅̅
2
v̅′′ +Ψ2𝐔2̅̅̅̅

2
v̅′′ − aΨ1𝐔1̅̅̅̅

2
v̅′′ − aΨ2𝐔2̅̅̅̅

2
v̅′′ +

𝐔1̅̅̅̇̅  √Ψ1√β1v̅
′ + 𝐔2̅̅̅̇̅  √Ψ2√β2v̅

′ − (Π0 − Π2 − Π1(α∆T))v̅
′′ + v̅′′′′ − (2v̅′2v̅′′′′ + 8v̅ ′v̅′′v̅′′′ +

2v̅′′3) + (Π0 − Π2 − Π1(α∆T) − Π1) (
3

2
v̅′2v̅′′) = 0.                                                                   (5) 

 
The dimensionless boundary conditions are: 

v̅(0) = v̅′(0) and v̅′′(1) = v̅′′′(1) = 0,                                                                                                 (6) 
 
Assuming that the phase velocities are harmonically fluctuating about constant mean 
velocities,  

�̅�1 = U̅1 (1 + μ1 sin(Ω1T0)),                                                                                                         (7) 
�̅�2 = U̅2 (1 + μ2 sin(Ω2T0)),                                                                                                         (8) 
 
Using these notation,  

C21 = 2√Ψ1√β1 , C22 = 2√Ψ2√β2 , C31 = Ψ1  C32 = Ψ2, C5 = Π1, C6 = (Π0 − Π2 −

Π1(α∆T) − Π1), C7 = Π0 − Π2 − Π1(α∆T).   
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Equation (5) can be reduced to: 

v̈̅ + �̅�1C21v̇̅
′ + �̅�2C22v̇̅

′ + C31𝐔1̅̅̅̅
2
v̅′′ + C32𝐔2̅̅̅̅

2
v̅′′ − aC31𝐔1̅̅̅̅

2
v̅′′ − aC32𝐔2̅̅̅̅

2
v̅′′ + 𝐔1̅̅̅̇̅  C11v̅

′ +

𝐔2̅̅̅̇̅  C12v̅
′ − C7v̅′′ + v̅′′′′ − (2v̅′2v̅′′′′ + 8v̅′v̅′′v̅′′′ + 2v̅′′3) + C6 (

3

2
v̅′2v̅′′) = 0.                    (9) 

3. METHOD OF SOLUTION 

Adopting the empirical relationship for a gas-liquid flow by Adegoke and Oyediran (2018), as 
derived from the Chisholm Equation by Woldesemayat and Ghajar (2007). An approximate 
solution of the perturbed dimensionless Equations for u̅ and v̅  is expressed in the form: 

v̈̅ + �̅�1C21v̇̅
′ + �̅�2C22v̇̅

′ + C31𝐔1̅̅̅̅
2
v̅′′ + C32𝐔2̅̅̅̅

2
v̅′′ − aC31𝐔1̅̅̅̅

2
v̅′′ − aC32𝐔2̅̅̅̅

2
v̅′′ + 𝐔1̅̅̅̇̅  C11v̅

′ +

𝐔2̅̅̅̇̅  C12v̅
′ − C7v̅′′ + v̅′′′′ + ε (−(2v̅′2v̅′′′′ + 8v̅′v̅′′v̅′′′ + 2v̅′′3) + C6 (

3

2
v̅′2v̅′′)) = 0.         (10) 

Also, perturbing the harmonically fluctuating velocities about their mean values U1̅̅ ̅ and U2̅̅̅̅ ; such 
that, 
 
𝐔1 ̅̅ ̅̅ = U1̅̅ ̅ (1 + εμ1 sin(Ω1T0))  and 
𝐔2̅̅̅̅ = U2̅̅̅̅  (1 + εμ2 sin(Ω2T0)) .                                                                                                           (11) 
 
Where Ω1 and Ω2 are the pulsation frequencies. Therefore, an approximate solution for u̅ and v̅  
can be derived in the form: 
 
v̅ = v̅0(T0, T1) + εv̅1(T0, T1) + ε

2v̅2(T0, T1) + O(ε).                                                                      (12) 

Considering two time scale, T0 = t  and T1 = εt. Where ε is a small dimensionless measure of 
the amplitude of u̅ and v̅, used as a book-keeping parameter. Based on the foregoing, the time 
derivatives operators are: 
 
d

dt
= D0 + εD1 + ε

2D2 +  O(ε),                                                                                                           (13) 

d2

dt2
= D0

2 + 2εD0D1 + ε
2(D1 

2 + 2D0D2) + O(ε),                                                                          (14) 

Where Dn =
∂

∂Tn 
.                                                                                                                                    (15) 

Substituting Equations (11), to (14) into Eq. (10) and equating the coefficients of (ε) of order 
zero and one respectively gives; 
 

O(ε0).        D0
2
v̅0 − C7v̅0′′ + v̅0

′′′′ + C21D0v̅0
′U̅1 + C22D0v̅0

′U̅2 + C31v̅0
′′U̅1

2
+ C32v̅0

′′U̅2
2
−

aC31v̅0
′′U̅1

2
− aC32v̅0

′′U̅2
2
= 0,                                                                                                         (16) 

 

O(ε1).       D0
2
v̅1 − C7v̅1

′′ + v̅1
′′′′ − 3v̅0

′′v̅0
′′′ − 2v̅0

3′′
− 2v̅0

′′′′v̅0
2′
+ 2D0D1v̅0 + C31v̅1

′′U̅1
2
+

C32v̅1
′′U̅2

2
− 8v̅0

′v̅0
′′v̅0

′′′ +
3

2
C6v̅0

′2v̅0
′′ + C21D0v̅0

′U̅1 + C22D0v̅0
′U̅2 + C21D1v̅0

′U̅1 +

C22D1v̅0
′U̅2 − aC31v̅1

′′U̅1
2
− aC32v̅1

′′U̅2
2
+ 2C31μ1 sin(Ω1T0)U̅1

2
v̅0

′′ +

2C32μ2 sin(Ω2T0)U̅2
2
v̅0

′′ + C21μ1 sin(Ω1T0)D0U̅1 v̅0
′ + C22μ2 sin(Ω2T0)D0U̅2 v̅0

′ −

2aC31μ1 sin(Ω1T0)U̅1
2
v̅0

′′ − 2aC32μ2 sin(Ω2T0)U̅2
2
v̅0

′′ + C41Ω1μ1 cos(Ω1T0)U̅1v̅0
′ +

C42Ω2μ2 cos(Ω2T0)U̅2v̅0
′ = 0.                                                                                                            (17) 
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The homogeneous solution of the leading order Equation (16) can be expressed as: 
 
v̅(x, T0, T1)0 = η(x)n exp(iλnT0) + CC.                                                                                              (18) 
 
Where (CC) is the complex conjugate,  and η(x)n is the complex modal functions for transverse 
vibrations for each mode (n) and,  λn is the eigenvalues for the transverse vibrations for each 
mode (n). The natural frequencies can be estimated by solving the quartic Equation (19) and the 
condition of obtaining a non-trivial solution of the boundary condition matrix (21) 
simultaneously. 
 

z4jn + (C7 − C31U̅1
2
− C32U̅2

2
+ aC31U̅1

2
+ aC32U̅2

2
) z2jn − (C21U̅1 + C22U̅2)zjnλn −

λ2n = 0,   j = 1,2,3,4 and n = 1,2,3,4,5…                                                                                         (19) 
 
Boundary condition matrix: 
 

⌊
 
 
 

1 1 1 1
z1n z2n z3n z4n

(z1n)
2. exp (i. z1n) (z2n)

2. exp (i. z2n) (z3n)
2. exp (i. z3n) (z4n)

2. exp (i. z4n)

(z1n)
3. exp (i. z1n) (z2n)

3. exp (i. z2n) (z3n)
3. exp (i. z3n) (z4n)

3. exp (i. z4n)⌋
 
 
 

⏟                                                    
G

 . [

1
H2n
H3n
H4n

] . H1n = (

0
0
0
0

)     (20) 

 
For a non-trivial solution, the determinant of (G) must varnish, That is: 
 
DET(G) = 0.                                                                                                                                            (21) 

Where  (λn), are the natural frequencies and (Zn) are the eigenvalues. The mode function of the 
transverse vibration corresponding to the nth eigenvalue is expressed as: 

ƞ(x)n = H1n. [e
x .z1n .i − (A + B + C + D) − E].                                                                             (22) 

Where: 
 

A =  
ex .z4n .i.  [e z1n .i.(z1n)

3.z2n−  e
 z1n .i.(z1n)

3.  z3n−  e
 z1n .i .  z4n.(z1n)

2 .z2n 

(z2n− z4n).(z3n− z4n) .[e
 z2n .i.(z2n)2− e

 z3n .i .(z3n)2]
 , 

 

B =  
ex .z4n .i.  [e z1n .i.z4n.(z1n)

2.z3n−  e
 z2n .i.z1n.(z2n)

3+  e z2n .i .  z4n. z1n.(z2n)
2  

(z2n− z4n).(z3n− z4n) .[e
 z2n .i.(z2n)2− e

 z3n .i .(z3n)2]
 , 

 

C =  
ex .z4n .i.  [e z3 .i.z1n.(z3n)

3−  e z3 .i.z4n.z1n.(z3n)
2+  e z2n .i .(z2n)

3.z3n  

(z2n− z4n).(z3n− z4n) .[e
 z2n .i.(z2n)2− e

 z3n .i .(z3n)2]
 , 

 

D =  
ex .z4n .i.  [−e z2n .i.z4n .(z2n)

2.z3n−  e
 z3 .i.z2n.(z3n)

3+  e z3 .i .z4n.z2n.(z3n)
2   

(z2n− z4n).(z3n− z4n) .[e
 z2n .i.(z2n)2− e

 z3n .i .(z3n)2]
 , 

 

E =  
ex .z2n .i.(z1n− z4n).[e

 z1 .i.  (z1n)
2−  e z3 .i.(z3n)

2]   

(z2n− z4n).  [e
 z2 .i.(z2n)2− e

 z3 .i .(z3n)2]
+ 

ex .z3 .i.(z1n− z4n).[e
 z1n .i.  (z1n)

2−  ez2i.(z2n)
2]   

(z3n− z4n).  [e
 z2 .i.(z2n)2− e

 z3 .i .(z3n)2]
 . 
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3.1. Principal parametric resonance 

Substituting Equation (18) into the Equation (17) gives; 
 

D0
2v̅1 − C7v̅1

′′ + v̅1
′′′′ + C21D0v̅1

′U̅1 + C22D0v̅1
′U̅2 + C31v̅1

′′U̅1
2
+ C32v̅1

′′U̅2
2
−

aC31v̅1
′′U̅1

2
− aC32v̅1

′′U̅2
2
= (−B1 [

∂Y(T1)    

∂T1
] + B2 [ Y(T1)

2Y(T1)̅̅ ̅̅ ̅̅ ̅]) exp(iλT0) +

[B3 [exp(−iΩ2T0) − exp(iΩ2T0)] + B4 [exp(−iΩ1T0) − exp(iΩ1T0)]] Y(T1)exp(iλT0) +

[B5 [exp(−iΩ2T0) − exp(iΩ2T0)] + B6 [exp(−iΩ1T0) − exp(iΩ1T0)]] Y(T1)̅̅ ̅̅ ̅̅ ̅exp(−iλT0) +

NST.                                                        (23) 
 
Here NST denote non-secular terms. The proximity of the nearness can be expressed as: 
 
Ω1 = 2λ + εσ2 and Ω2 = 2λ + εσ2,                                                                                                   (24) 
 
Where σ2 is the detuning parameter. Substituting the Equations of nearness to resonance 
Equation (24) into Equation (23) and replacing εT0 with T1. The secular terms are collated as: 
 

(−B1 [
∂Y(T1)    

∂T1
] + B2 [ Y(T1)

2Y(T1)̅̅ ̅̅ ̅̅ ̅]) exp(iλT0) + [[B7 + B8] exp(iεσ2T0)] Y(T1)̅̅ ̅̅ ̅̅ ̅exp(iλT0) =

0.                                                                                                                                                                (25) 
 
The solvability condition demands that the coefficient of exp(iλT0)  should vanish; Nayfeh 
(2004), Nayfeh and Mook (1995), Thomsen (2003). This implies that, Y (T1) should satisfy the 
following relation: 
 

−B1 [
∂Y(T1)    

∂T1
] + B2 [ Y(T1)

2Y(T1)̅̅ ̅̅ ̅̅ ̅] + [[B7 + B8] exp(iεσ2T0)]Y(T1)̅̅ ̅̅ ̅̅ ̅ = 0.                          (26)                                                   

With the inner product defined for complex functions on [0, 1] as: 
 

〈f, g〉 = ∫ fg̅
1

0
dx.                                                                                                                                       (27) 

 
Equation (26) can be cast as: 
 
∂Y(T1)

∂T1
+NY(T1)

2Y(T1)̅̅ ̅̅ ̅̅ ̅ + MY(T1)̅̅ ̅̅ ̅̅ ̅ exp(iσ2T1) = 0                                                                       (28) 

                                                                     

Where: N =
∫ [B2]η(x)̅̅ ̅̅ ̅̅1
0 dx

−∫ [B1]η(x)̅̅ ̅̅ ̅̅1
0 dx

 , M =
∫ [B7+B8]η(x)̅̅ ̅̅ ̅̅1
0 dx

−∫ [B1]η(x)̅̅ ̅̅ ̅̅1
0 dx

.  

 
To determine Y(T1), the solution of Equation (28) is expressed in polar form as: 
 

Y(T1) =
1

2
αy(T1)e

iβy(T1),  Y(T1)̅̅ ̅̅ ̅̅ ̅ =
1

2
αy(T1)e

−iβy(T1).                                                                     (29) 

 
Substituting into the solvability condition and separating real and imaginary parts. The following 
set of modulation equation is formed: 
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0 =
dαy(T1)

dT1
+
SRαy(T1)

3

4
+MRαy(T1) cos(ψ) − MIαy(T1) sin(ψ),                                       (30) 

0 = αy(T1)
dβy(T1)

dT1
+
SIαy(T1)

3

4
+MRαy(T1) sin(ψ) + MIαy(T1) cos(ψ).                           (31) 

 
Where: = σ2T1 − 2βy(T1) , 
 
NR and MR are the real  part of N and M, 
NI and MI are the imaginary part of N and M. 

Seeking for stationary solutions, α(y)′ = ψ′ = 0 in modulation Equation (30 and 31) 
 

0 =
NRαy(T1)

2

4
+MRcos(ψ) − MI sin(ψ),                                                                                          (32) 

0 =
σ2

2
+
NIαy(T1)

2

4
+MRsin(ψ) + MI cos(ψ).                                                                                  (33) 

 
Therefore; 
 

ψ = tan−1 (
NIαy(T1)

2 + 2σ2
NRαy(T1)2

) − tan−1 (
MI

MR
)  

 
Such that; 
 
(NI2 +NR2)αy(T1)

4 + 4NIσ2αy(T1)
2 − 16MR2 − 16MI2 + 4σ2

2 = 0.                                   (34) 
 

αy(T1)
2 = 0 or αy(T1)

2 =
−2.NI.σ2

NI2+NR2
±
2√4.MI2.NI2+4.MI2.NR2+4.MR2.NI2+4.MR2.NR2−NR2σ22

NI2+NR2
           (35) 

 
Therefore, considering the n-th values of αy(T1) and βy(T1) corresponding to the n-th modal 
functions and the n-th natural frequencies, the n-th solution of coupled problem is expressed as: 
 
v̅(x, t)n = αy(T1)nη(x)n cos(λnT0 + βy(T1)n) + O(ε).                                                                  (36) 
 
Substituting into the Equation (36),  

T0 = t , T1 = εt,  αy(T1)n = αyn, βy(T1)n =
σ2nT1−ψn

2
, Ω1 = 2λn + εσ2n, Ω2 = 2λn + εσ2n,

Ω1 = Ω2 = Ω.  
 
The first order approximate solution is expressed as:  
 

v̅(x, t) = ∑ αyn|η(x)n| cos (
(tΩ−ψ)

2
+ φyn) + O(ε)

∞
n=1  ,                                                          (37) 

 
Where the phase angles  φyn is given by: 
 

 tan(φyn) =
Im{η(x)n}

Re{η(x)n}
.                                                                                                                            (38)                                     

3.2. Stability of fixed points 

To characterize the stability of the fixed points and also the various periodic solutions, the 
Jacobian is derived from Equations (32 and 33) as: 
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J = [
−
NR.αy(T1)

2
MI. cos(ψ) + MR. sin(ψ)

−
NI.αy(T1)

2
MI. sin(ψ) − MR. cos(ψ)

],                                                                                   (39) 

 
The characteristics equation is obtained by solving for the eigenvalues of the Jacobian, 
 
|J − ϑI| = 0,where ϑ are the eigenvalues.                                                                                       (40) 
 
The problem is characterized by two types of fixed points: Trivial fixed points corresponding to 
αy(T1) = 0  and nontrivial fixed points corresponding to αy(T1) ≠ 0. However, to analyze the 
stability of the nonlinear solution (nontrivial solution), we substitute the solutions of αy(T1) as 
obtained from Equation (35) into the characteristic equation: 
 
ϑ2 + C1ϑ + C2 = 0,                                                                                                                               (41) 
 
Where, 
 

C1 = MRcos(ψ) − MI sin(ψ) +
NRαy(T1)

2
 , 

C2 =
MI.NI.αy(T1) .cos(ψ)

2
+
MR.NR.αy(T1).cos(ψ)

2
−
MI.NR.αy(T1).sin(ψ)

2
+
MR.NI.αy(T1).sin(ψ)

2
,  

Adopting the Routh-Hurwitz criteria, the nonlinear fixed point solution of αy(T1) is stable only 
if: 

C1 > 0 and C2 > 0.                                                                                                                          (42) 
 
3.3. Bifurcation Analysis 

Using the stationary solution assumption α(y)′ = ψ′ = 0                
To eliminate cos(ψ)  and sin(ψ) from the Jacobian in Equation (39), thus: 
 

J = [
−
NR.αy(T1)

2
−
NI.αy(T1)

2

4
−
σ2

2

−
NI.αy(T1)

2

NR.αy(T1)
2

4

],                                                                                                    (43) 

 
The characteristics equation is obtained by solving for the Eigenvalues of the Jacobian, 
 
|J − ϑI| = 0,where ϑ are the Eigenvalues.  
 

ϑ2 + (
NR.αy(T1)

2
−
NR.αy(T1)

2

4
) ϑ − (

NI2.αy(T1)
3

8
+
NI.αy(T1).σ2

4
+
NR2.αy(T1)

3

8
) = 0,                        (44) 

 

The sum of the solutions of the characteristic polynomial is  ϑ1 + ϑ2 =
NR.αy(T1).(αy−2)

4
. However, 

for positive values of NR and αy(T1) < 2,  there cannot be a pure imaginary pair of eigenvalues. 
Hence, Hopf bifurcations cannot exist for the system. However, the possibilities of having a 
simple zero eigenvalue cannot be ruled out, the likely bifurcations are saddle-node, pitchfork 
and transcritical bifurcations. Thus by setting ϑ = 0 in the characteristic polynomial (44), it is 
observed that such bifurcations require the following conditions to be satisfied: 
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αy(T1) = 0 or αy(T1)
2 =

−2.NI.σ2

NI2+NR2
                                                                                                       (45) 

The value of αy(T1) needs to satisfy Equation (35). With σ2 as the controlling parameter, the 
frequency response curve is expected to bifurcate at three points; namely A, B and C. 

(σ2, 0)1,2 = (2√MI2 +MR2, 0) , (−2√MI2 +MR2, 0) 

 

(σ2, αy(T1)) =
−2√

MI2+MR2

NI2+NR2
(NI2+NR2)

NR
 (Softening) and 

(σ2, αy(T1)) =
2√

MI2+MR2

NI2+NR2
(NI2+NR2)

NR
 (Hardening)                                                                               (46) 

To ascertain the possibility of only having saddle node and pitchfork bifurcations, vertical 
tangency of the equilibrium curves can be checked. Rearranging and squaring the second 
solution presented in Equation (35) gives; 
 
((NI2 + NR2)αy(T1)2 + 2.NI. σ2)

2 =

(2√4.MI2. NI2 + 4.MI2. NR2 + 4.MR2. NI2 + 4.MR2. NR2 −NR2σ22)
2

                                   (47) 

Differentiating both side with respect to αy(T1): 

2((NI2 +NR2)αy(T1)
2 + 2.NI.σ2) (2(NI

2 + NR2)αy(T1)
2 + 2.NI.

dσ2

dαy
) = 16NR2σ2

2σ2
dσ2

dαy
           (48)                

Vertical tangency of the curve αy(T1) = αy(T1)(σ2) demands that; 
dαy(T1)

dσ2
→ ∞, Therefore, 

dσ2

dαy(T1)
→ 0. Substituting 

dσ2

dαy(T1)
= 0 in Equation (48), it is seen that vertical tangency occurs at: 

 

αy(T1) = 0 or αy(T1)
2 =

−2.NI.σ2

NI2+NR2
                                                                                                       (49) 

The bifurcation points are obtained at A, B and C. Again, this confirmed the presence of one 
saddle-node and two pitchfork bifurcations. 

 
 
 
 
 
 
 

 

 

 

 

 
Figure 2: Typical Frequency response curves with bifurcation points. 

At equilibrium, it’s identified as detailed in Equations (43-49) that point A is a saddle-node 
bifurcation and points B and C are subcritical and supercritical pitchfork bifurcations respectively. 
According to Thomsen, (2003); the distinction between subcritical and supercritical bifurcations 
is not tied to the nature of the branches, but to their stability. For a supercritical bifurcation, a 
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stable solution becomes unstable, and two stable branches come out on each side of the 
unstable solutions. On the other hand, for subcritical bifurcation an unstable solution achieves 
stability, and two branches of unstable solutions emerged. However, for periodic solutions, the 
saddle node at point A also corresponds to cyclic-fold bifurcation while the subcritical pitchfork 
bifurcation and supercritical pitchfork bifurcations at B and C also corresponds to subcritical and 
super critical Hopf bifurcations respectively (Thomsen, 2003, Nayfeh and Balachandran, 2004). 
  

4. RESULTS AND DISCUSSION 

This section presents the numerical solutions of the nonlinear dynamics of a cantilever pipe, 
conveying steady pressurized air/water two-phase flow. The transverse linear natural 
frequencies are estimated by solving Equations (19) and (20) simultaneously with a numeric code 
written in Matlab.  
 
Table 1: Summary of pipe and flow parameter 

Parameter Name Parameter Unit Parameter Values 

External Diameter Do (m) 0.0113772 

Internal Diameter Di (m) 0.00925 

Length L (m) 0.1467 

Pipe density ρpipe (kg/m3) 7800 

Young’s Modulus  E (N/m2) 207E11 

Gas density ρGas (kg/m3) 1.225 

Water density ρWater (kg/m3) 1000 

 
In the manner of [7], the Argand diagram of the Eigen-frequencies is used to find the critical 
velocities of the two-phase flow for the various void fractions (0.1, 0.3 and 0.5). The critical 
velocities for the two phase flow is obtained and presented in Table 2. 
 
Table 2: Summary of the linear two-phase solution of critical flow velocities 

Fluid Void  
Fraction 

𝛃 
 Liquid 

𝛃  
Gas 

𝚿  
Liquid 

𝚿  
Gas 

 Critical mixture velocity 

      
Transverse  Axial 

Two-phase 0.1 0.19999 0.00003 0.99986 0.00014 11.502  29.004 

Two-phase 0.3 0.19998 0.00010 0.99948 0.00052 12.505   31.634  

Two-phase 0.5 0.19995 0.00024 0.99878 0.00122 14.613   36.966 

* Critical mixture velocity based on Hopf bifurcation of 2nd mode 
 

In the absence of internal resonance, the near resonant frequency response of the transverse 
vibrations is shown by [9] as a similitude of Duffing equation with parametric excitation or of 
nonlinear Mathieu’s equation. The response peaks tilts over to the left, indicating nonlinear 
restoring forces of the softening type. However, the work shows that for amplitudes of pulsation 
of phases taken as µ1= 0.1, and µ2=0.2 at a post critical velocity of 16, the frequency response 
curves transit between subcritical and supercritical bifurcation as the void fraction increases 
from 0.1 to 0.3. To track the transition, bifurcation points on the frequency response curve was 
initially identified by Equations (43-49), and their variations examined with changes in the void 
fractions of the two phase flow. 
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The plots show the near resonant frequency response curve for the transverse vibrations of pipe 
that conveys pulsating gas-liquid two phase flow at mixture flow velocity of 16 for various void 
fractions. The system exhibits a softening non-linear restoring force with the peak tilting to the 
left. Consequently, jumps and multiple solutions exist at some values of the detuning parameter. 
As seen from the plots, the dynamics changed qualitatively at points A, B and C. Assessing the 
similarity between the analytical values and the bifurcations points from the plot of the 
numerical solution obtained by solving Equation 34 using the MATLAB’s “solve” nonlinear 
routine, it can be seen that a good comparison is obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Frequency response curve with bifurcation points for void fraction of 0.1. 

Table 3: Analytical results of the bifucation points for void fraction of 0.1 

Saddle Node bifurcation point A Pitchfork bifurcation points B and C 

−𝟐√
𝐌𝐈𝟐 +𝐌𝐑𝟐

𝐍𝐈𝟐 + 𝐍𝐑𝟐
(𝐍𝐈𝟐 + 𝐍𝐑𝟐)

𝐍𝐑
 

−𝟐√𝐌𝐈𝟐 +𝐌𝐑𝟐 𝟐√𝐌𝐈𝟐 +𝐌𝐑𝟐 

-12.3634 -2.3387 2.3387 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Frequency response curve with bifurcation points for void fraction of 0.3. 
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Table 4: Analytical results of the bifucation points for void fraction of 0.3 

Saddle Node bifurcation point A Pitchfork bifurcation points B and C 

−𝟐√
𝐌𝐈𝟐 +𝐌𝐑𝟐

𝐍𝐈𝟐 + 𝐍𝐑𝟐
(𝐍𝐈𝟐 + 𝐍𝐑𝟐)

𝐍𝐑
 

−𝟐√𝐌𝐈𝟐 +𝐌𝐑𝟐 𝟐√𝐌𝐈𝟐 +𝐌𝐑𝟐 

-6.3647 -1.9227 1.9227 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: Frequency response curve with bifurcation points for void fraction of 0.5. 
 
Table 5: Analytical results of the bifucation points for void fraction of 0.5 

Saddle Node bifurcation point A Pitchfork bifurcation points B and C 

−𝟐√
𝐌𝐈𝟐 +𝐌𝐑𝟐

𝐍𝐈𝟐 + 𝐍𝐑𝟐
(𝐍𝐈𝟐 + 𝐍𝐑𝟐)

𝐍𝐑
 

−𝟐√𝐌𝐈𝟐 +𝐌𝐑𝟐 𝟐√𝐌𝐈𝟐 +𝐌𝐑𝟐 

-5.0295 -1.5010 1.5010 

 
Table 6: Comparison between analytical and numerical results 

Void 
fraction 

Points Analytical Numerical 
Percentage 

error (%) 

0.1 

A -12.3634 -12.3 0.51 

B -2.3387 -2.3 1.65 

C 2.3387 2.3 1.65 

0.3 

A -6.3647 -6.3 1.02 

B -1.9227 -1.9 1.18 

C 1.9227 1.9 1.18 

0.5 

A -5.0295 -5 0.59 

B -1.5010 -1.5 0.07 

C 1.5010 1.5 0.07 

 

4.1. Effect of void fraction on the bifurcation points  

To investigate the transition between subcritical pitchfork bifurcation and supercritical pitchfork 
bifurcations at point B and C as the void fraction changes from 0.1 to 0.3 for a mixture velocity 
of 16, various void fraction between 0.1 and 0.3 were examined for a range of detuning 

0
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0.12
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parameter between ± 3. Figure 6 shows a plot of the amplitudes as a function of the void fraction 
and detuning parameter; Figure 6(a and b) corresponds to the occurrence at point B and C 
respectively. Results show that the transition occurred between void fractions of 0.2 and 0.21. 
 

(a) (b) 

Figure 6: Frequency response curves for various void fractions between 0.1 and 0.3 in 
the detuned range – 𝟑 < σ𝟐 < 3; (a) At point B, (b) At point C. 

 
With the transition point narrowed down, frequency response curves are presented in Figure 7 
for void fractions 0.2 to 0.21 with a step size of 0.0025. The plots show that the transition actually 
occurred between void fractions of 0.2025 and 0.205. 
 

  

(a) (b) 

  

(c) (d) 

Figure 7: Frequency response curves for various void fractions between 0.2 and 0.21 

 

4. CONCLUSION  

This work uses the method of multiple scale perturbation to analyze the stability and pitchfork 
bifurcation of the transverse vibration of a cantilevered pipe conveying pulsating two phase flow. 
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The system presents 1:2 parametric relationship as observed between the pulsating frequencies 
and the frequency of transverse vibration. The response of the pipe is characterizes by a 
nonlinear softening behavior with the presence of jumps and multiple solutions. Analytical 
bifurcation assessment shows that the system exhibits a saddle node bifurcation and subcritical 
pitchfork and supercritical pitchfork bifurcations; this validates the outcome of the numerical 
simulations. The two pitchfork bifurcation points for the trivial solutions are observed to transit 
between supercritical pitchfork bifurcation and subcritical pitchfork bifurcation at a void fraction 
when the mixture flow velocity is higher than the critical mixture velocity. 
 
Appendix 

B1 = (C21
∂η(x)

∂x
U̅1 + C22

∂η(x)

∂x
U̅2 + 2η(x)λi)  

B2 = 6 (
∂η(x)

∂x
)
2 ∂η(x)̅̅ ̅̅ ̅̅

∂x
+ 2(

∂η(x)

∂x
)
2 ∂4η(x)̅̅ ̅̅ ̅̅

∂x4
+ 4

∂η(x)

∂x

∂η(x)̅̅ ̅̅ ̅̅

∂x

∂4η(x)

∂x4
+ 8

∂η(x)
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∂2η(x)̅̅ ̅̅ ̅̅

∂x2
∂3η(x)
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8Y(T1)
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̅̅ ̅̅ ̅̅

∂x

∂2η(x)

∂x2
∂3η(x)

∂x3
− 3C6
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∂x
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∂2η(x)

∂x2
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∂x

∂2η(x)

∂x2
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−
3

2
C6 (

∂η(x)

∂x
)
2 ∂2η(x)

∂x2
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1

2
(C22μ2
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U̅2λ) −

1

2
(C42Ω2μ2

∂η(x)

∂x
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2
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