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Abstract 
The study and early detection of plant diseases are important because they harm plants and essential products like 
food, clothing, furniture, and housing. Plant diseases such as late blight, early blight, and septoria leaf spot 
significantly reduce tomato crop yields, posing major challenges to sustainable agriculture and food security. This 
paper aims to develop a cloud-based software system to accurately diagnose and recommend diseases in tomato 
leaves from images, providing recommended treatments for the detected diseases. The system integrates three 
neural networks: two Convolutional Neural Networks for object detection and feature extraction, and a third neural 
network for classification. These networks were trained on images from the Plant Village dataset, with 
preprocessing to enhance image quality and annotation accuracy. The system was tested and verified, achieving a 
training accuracy of 98% and a loss of less than 7.6% on the test set. However, real-world testing indicated an 
accuracy of around 80% for non-test-set images. The developed system has the potential to significantly aid in the 
early detection and management of tomato plant diseases, improving crop yields and agricultural sustainability. 
The software is accessible via an Application Programming Interface developed using TypeScript, and a frontend 
web application serves as a human-machine interface. 
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1.0 INTRODUCTION 

The tomato (Solanum lycopersicum L.) is a crop plant from the nightshade family (Solanaceae) 
that originated in the Andes of South America. It was introduced to Europe in the 16th century 
and has since become an essential crop cultivated worldwide (Gerszerg et al., 2015). Tomatoes 
are among the most popular and economically significant vegetable crops globally, serving as a 
key ingredient in various dishes, particularly in West Africa (Zhenhua et al., 2017; Jeffrey, 
2022). They can be marketed in fresh form or processed into products like pastes, 
concentrates, juice, and ketchup. Additionally, tomatoes are a rich source of vital nutrients 
such as lycopene, β-carotene, and vitamin C, all of which contribute positively to human health 
(Bergougnoux, 2014). 

With the global population projected to reach 9 billion by 2037 (Pison, 2022), there is a 
pressing need to enhance tomato production to meet the rising demand. Advances in 
molecular biology and plant biotechnology have enabled the genetic engineering of tomatoes 
to improve resilience against biotic stresses (e.g., diseases, pests, weeds) and abiotic stresses 
(Gerszerg et al., 2015; Tian, 2020). Despite these advances, no cultivar can completely 
withstand these stresses, underscoring the importance of early detection and mitigation of 
symptoms. 

Traditionally, symptom detection involves visual inspection or laboratory analysis of leaf 
samples. However, these methods are often inefficient for large-scale adoption or lack 
reliability. Therefore, there is a critical need for a more efficient and reliable system for disease 
identification (Sanjeela & Jaswinder 2023). This paper aims to develop a cloud-hosted artificial 
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intelligence system that utilizes Convolutional Neural Networks (CNNs) for detecting common 
diseases in tomato leaves. The CNN-based system offers superior efficiency and reliability 
compared to traditional methods of visual inspection or laboratory analysis. 

Agarwal et al. (2020) proposed a novel technique for identifying diseases in tomato crops using 
a Convolutional Neural Network (CNN). The CNN architecture comprised three convolution and 
max-pooling layers with varying numbers of filters in each layer. The model was trained on an 
NVIDIA DGX v100 machine equipped with 40600 CUDA cores, 5120 tensor cores, 128 GB RAM, 
and 1000 TFLOPS. The proposed CNN model was trained on tomato leaf samples from the Plant 
Village dataset, and data augmentation techniques were employed to address class imbalance. 
These techniques included changing orientation, cropping, and modifying the colour scheme of 
images using the Python Augmenter package.  

Xie et al. (2020) proposed a Faster Disease Recognition with Improved Attention Convolutional 
Neural Network (DR-IACNN) architecture based on the Faster Regional Convolutional Neural 
Network (Faster R-CNN) algorithm for disease detection in grape leaves. The architecture 
incorporated a Squeeze-Extraction block (SE block) and Inception modules into the ResNet 
backbone network of Faster R-CNN, resulting in an improved feature extraction method named 
INSE-ResNet. The experiments demonstrated that the Faster DR-IACNN achieved a mean 
Average Precision (mAP) of 81.1% and a detection speed of 15.01 FPS, outperforming Faster R-
CNN in terms of precision and real-time detection capability. However, it should be noted that 
the dataset used for training was generated in a laboratory, which may lead to biased model 
performance when applied to real-world leaf images.  

Aanis et al. (2023) provided an overview of 70 studies on deep-learning applications for disease 
diagnosis and management in agriculture. The literature review encompassed deep learning 
trends and methodologies, with a focus on plant disease diagnosis. The study highlighted major 
datasets used for training deep learning systems, including the PlantVillage dataset, Digipathos 
dataset, NLB dataset, RoCoLe, and Rice disease dataset. Findings from the study suggested an 
effective approach for early detection, identification, and severity estimation of crop diseases, 
emphasizing the potential for developing automated and efficient plant disease management 
systems. 

Current tomato leaf disease detection systems are mostly academic or used by organizations 
with more resources, making it difficult for local farmers. This paper aims to provide a cost-
effective and practical solution for the both local and urban farmers. 

2.0 METHODOLOGY 
The accessibility gap between rural farmers and well-equipped agricultural facilities necessary 
for optimal crop yield is one of the targeted aims of this paper, by providing an easy-to-use and 
efficient system for detecting common diseases in tomato leaves and offering recommended 
treatments for the detected diseases. Farmers can simply take a picture of a tomato leaf via a 
web application that transmits the image data to a cloud-hosted system that will determine if 
the picture is that of a tomato leaf or not. Valid tomato leaf images undergo analysis by a pre-
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trained Convolutional Neural Network (CNN) to ascertain their health status. If diseased, the 
system provides recommended treatments. The CNN model would be deployed as a cloud-
hosted system to facilitate easy training and updates, considering the project's target 
demographic may lack familiarity with technology. Additionally, the benefit of having a cloud-
hosted solution is that; experts would be in charge of training the models and providing up-to-
date treatments for the diseases. 

The system is comprised of two components: 

1. A cloud-hosted Convolutional Neural Network (CNN) accessible via an Application 
Programming Interface (API) written in the Typescript programming language. The API includes 
An internet-accessible API endpoint providing a list of detected classes, and an internet-
accessible API endpoint that accepts image files and returns a successful response if the image 
is that of a tomato leaf with additional metadata if the image contains a diseased tomato leaf. 
Otherwise, the endpoint returns an error with a specific error message indicating that a non-
tomato leaf image was uploaded. 

2. A web application for farmers to take pictures of tomato leaves, transmitting them to the 
cloud-hosted backend for real-time analysis and treatment recommendations. 

The process flow chart illustrating the system operation during image processing is depicted in 
Figure 1. 

 

Figure 1: The system operation during image processing 
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The cloud-hosted backend was written in the Typescript programming language as there is a 
machine learning framework called “Tensorflow” available for the programming language. The 
Typescript programming language was also used to develop the frontend component of the 
cloud-hosted application as well as train machine learning models which significantly reduced 
the technological complexity of the software system. The web application for farmers would be 
developed using standard frontend development tools including HTML, CSS, Typescript, and 
React. A flow chart depicting the project flow from problem definition to system deployment is 
depicted in Figure 2. 

 

Figure 2: Project flow from problem definition to system deployment 

2.1 Problem Definition 
There is a significant disparity between local farmers in Nigeria and the essential agricultural 
facilities required for optimal crop yields. Additionally, many of these farmers may lack 
comprehensive and up-to-date knowledge about various tomato diseases and their 
corresponding treatments, which have been extensively researched and documented. This 
knowledge gap often leads to losses after planting seasons due to low crop yields resulting from 
diseased crops. This project aims to empower local farmers in Nigeria by providing them with a 
reliable and efficient means of identifying common diseases in their tomato plantations. 
Instead of relying on advanced facilities like agricultural laboratories, farmers can simply take a 
picture of a tomato leaf via a web application and receive real-time analysis results. The system 
should provide probability scores for each identified disease along with treatment 
recommendations. 
 
2.2 Selection of Neural Network Architecture 
The system is expected to identify tomato leaves, identify certain features on the detected 
tomato leaf and classify the leaf as healthy or not within an uploaded image. This is an object 
detection task that encompasses feature detection and classification. For this project, transfer 
learning is used in combination with the Imagenet and ResNet V2 50 model to train a feature 
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extraction and classification model to recognize tomato leaves in images along with any 
distinguishing features on the tomato leaves for disease detection. 
  
2.3 Preparation of Dataset for Model Training 
The tomato leaf images are sourced from the PlantVillage dataset (Kaggle dataset) which 
contains over twenty-five thousand combined images of healthy tomato leaves and tomato 
leaves with the following diseases; Bacterial spot, Early blight, Late blight, Leaf mould, Septoria 
leaf spot, Spider mites: Two-spotted spider mite, Target spot, Tomato yellow leaf curl virus, 
Tomato mosaic virus, and Powdery mildew. Since the model is expected to differentiate 
between tomato leaf images, whether diseased or not, and non-tomato leaf images, it was 
necessary to train the model on non-tomato leaf images as well. For this purpose, a subset of 
the ImageNet dataset used to train the Mobilenet neural network architecture is used to train 
the CNN to recognize unknown objects (Andrew et al., 2017; Joseph, 2023). The dataset was 
split into two groups; the training set and the test set in a ratio of four to one. 
 
2.4 Training the Neural Network 
The model was trained on an Apple Silicon M2 Pro chip with 12 computing cores available in 
the chip coupled with 16 gigabytes of unified LPDDR5-6400 memory, using the TensorFlow 
machine learning framework. The model was trained over 30 epochs of the training dataset 
with a batch size of 50, the test dataset was used to calculate the model accuracy and loss. 
 
2.5 Development of Backend Server and Frontend Web Client 
The backend server and frontend web client were both developed with the typescript 
programming language. The backend server was developed using the express web application 
framework while the frontend web client was developed using the ReactJS web framework. The 
system was deployed on a virtual machine with an ARM chip running on the AWS platform (a 
cloud hosting provider). It is accessible anywhere there is a stable internet connection. 
 
3.0 RESULTS AND DISCUSSION 
The Loss against Epoch graph is shown in Figure 3. It can be seen that loss decreases over time 
as a result of the model learning patterns in the dataset and making fewer errors in 
classifications. 



JER Vol. 29, No. 3 Owoeye et al. pp 22-31 

 
 

27 
 

 
Figure 3: Graph of Loss against Epoch 

Figure 4 represents the accuracy against epoch. It can be seen that the model accuracy 
increases over time as a result of the model learning patterns in the dataset and accurately 
predicting the image classes. 

 
Figure 4: Graph of Accuracy against Epoch 

 
Figures 5, 6, and 7 show the graphs of Precision against Epoch, Recall against Epoch and F1 
Score against Epoch respectively. It can be seen that the graphs plateau after the 19th epoch 
indicating that further training may not result in significant improvements in the model’s 
performance and this can be observed as improvements in model accuracy and loss start to 
decline after the 19th epoch 
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Figure 5: Precision against Epoch    Figure     6: Recall against Epoch 

  

The model performs well across different evaluation metrics. It maintains a low loss value of 
0.075 (7.5%), which helps in minimizing errors during training. With an accuracy of 0.9804 
(98%), it accurately predicts class labels for most samples. Notably, it achieves perfect 
Precision, Recall, and F1 score of 1, indicating its ability to identify positive instances without 
any false positives or negatives. Overall, these results suggest that the model is reliable for its 
intended task. 

     Figure 7: F1 score against Epoch 

3.1 Testing on Samples from Training Dataset 

The image of a tomato leaf with the label “Bacterial Spot” was selected from the training 
dataset to determine how well the system recognizes images from the training dataset. The 
result is shown in Figure 8. 
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Figure 8: Detection results for an image from the training dataset 

As seen above, the model predicts correctly that there is a 64.44% chance that the image is that 
of a tomato leaf with the bacteria spot disease. It also gives more information on the detected 
disease and the possible treatments. 

 
3.2 Testing On Real World Tomato Leaf Images 
The image of a tomato leaf sourced from a vegetable garden suspected to be afflicted with 
either the Septoria leaf spot disease or the leaf mould disease was analyzed by the system. The 
result is shown in Figure 9. 

  
Figure 9: Detection results for an image from the training dataset 
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It can be seen that the model gives a prediction of 52.34% for septoria leaf spot which is 
recognized by small circular spots, yellowing of surrounding tissue, coalescing spots, and dark 
centres. It also gives a close prediction of 41.6% for leaf mould which is recognized by yellowing 
and chlorosis; pale spots with dark borders and leaf curling. 

3.3 Testing on Non-Tomato Leaf Images 
To test how well the model generalizes on non-tomato leaf images, some indoor objects were 
used to test its accuracy for the “unknown” object class. The result for a prediction on a shoe is 
shown in Figure 10. 

 
Figure 10: Detection results for the image of a shoe 

 
As seen above, the model can generalize on non-tomato leaf images and label them as 
unknown since they are out of the scope of the model’s operations.  

 
3.4 Discussion 
The model was trained using a data-augmented dataset comprising approximately one hundred 
thousand images. Its performance yielded an accuracy score of 98% on the test set, with a loss 
of less than 7.6%. However, subsequent real-world testing revealed an accuracy level lower 
than anticipated. Approximately 80% of non-test-set images were accurately predicted, 
indicating a slight overfitting of the model. This potential overfitting may stem from the limited 
quality and quantity of the training dataset. It is notable that production-grade object detection 
systems typically undergo training on datasets containing millions of images. This extensive 
dataset enhances the quality of extracted features for more accurate identification. 
 
4.0 CONCLUSION 
In conclusion, the developed system for detecting tomato leaf diseases has been successfully 
implemented. This system includes a cloud-hosted web application, offering end-users the 
convenience of uploading tomato leaf images from their internet-connected devices for real-
time disease analysis. Moreover, the application provides recommendations for treating the 
identified diseases on their tomato plantations. A notable feature of the system is its ability to 
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undergo remote training and updates without necessitating end-users to update the 
application on their devices, owing to its web-hosted nature. Furthermore, there is potential for 
continued enhancement of treatment quality and the object detection algorithm through the 
engagement of domain experts. 
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